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ABOUT THIS REPORT

This report presents the results of ambient air monitoring conducted in 1997 as part of the
Nonmethane Organic Compounds (NMOC) and Speciated Nonmethane Organic Compounds
(SNMOC) monitoring program—a program designed to characterize the magnitude and
composition of selected air pollution components that affect ozone formation processes. During
the summer of 1997, ambient air samples were collected between 6:00 a.m. and 9:00 a.m., local
time, at six monitoring locations in three metropolitan arcas. Depending on options selected by
sponsoring agencies, the samples were analyzed for NMOC, SNMOC, volatile organic
compounds (VOC), carbonyls, or some combination of these categories. Overall, nearly 50,000
ambient air concentrations were measured during the 1997 program. This report not only
sumimarizes this large amount of air monitoring data, but includes a series of statistical and
numerical analyses to identify notable air quality trends. To provide sponsoring agencies a
different perspective on the air monitoring results, most of the analyses in this report (e.g.,
comparisons to selected meteorological conditions and comparisons to concentrations of ozone.
and nitrogen oxides) are different from those documented in previous NMOC/SNMOC reports.

When reading this report, it is important to note that the 1997 NMOC/SNMOC monitoring
program only characterizes levels of air pollution at six locations in three metropolitan areas. Due
to spatial variations in emissions sources and meteorological conditions, data trends identified for
the six monitoring locations may not necessarily apply to other locations within these
metropolitan areas, let alone to other urban settings. Further, though the NMOC/SNMOC
monitoring data are extensive and useful as inputs to regional ozone forecasting models, the
monitoring data alone are not sufficient for understanding how pollutants react and interact in the
atmosphere to form ozone. As a result, further research and data analyses on the monitoring
results are encouraged. To facilitate these ongoing research efforts, the NMOC/SNMOC
monitoring data have been made publicly available in electronic format from the Environmental
Protection Agency’s Aerometric Information Retrieval System.

The remainder of this report describes the goals of the NMOC/SNMOC monitoring
program, reviews the scope of the 1997 program, and summarizes and interprets ambient air
monitoring data collected in the summer of 1997. For a quick overview of the major findings of
this report, readers should refer to Section 4.4, Section 5.4, Section 6.4, and Section 7.4 for
summaries of the NMOC, SNMOC, VOC, and carbonyl monitoring, respectively. For the benefit
of sponsoring agencies, the final report for the 1998 NMOC/SNMOC program will focus almost
exclusively on how ambient air concentrations of selected pollutants have changed from year to
year—a topic that is not addressed in this report.
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1.0  Introduction

The U.S. Environmental Protection Agency (EPA) requires state environmental agencies
to develop and implement plans to reduce ozone concentrations in areas that are not in attainment
with the ozone national ambient air quality standard (NAAQS). Implementing effective ozone
control strategies has proven to be a complicated task, largely because of the numerous variables
that affect ozone formation processes. To help state environmental agencies characterize some of
these variables, EPA sponsors the Nonmethane Organic Compounds (NMOC) and Speciated
Nonmethane Organic Compounds (SNMOC) Monitoring Program. This program is designed to
measure ambient air concentrations of four classes of compounds that affect ozone formation:
total NMOC, SNMOC, volatile organic compounds (VOC), and carbonyls. Since the program’s
inception in 1984, many state agencies have participated in EPA’s program by installing air
monitoring stations within their jurisdictions. This report summarizes and interprets results from
the 1997 NMOC/SNMOC Monitoring Program, which included up to 3 months of daily

measurements of ambient air quality in or near three metropolitan areas.

This summary report provides a qualitative overview of air pollution at the
NMOC/SNMOC monitoring stations, as well as a quantitative analysis of the monitoring data and
several other factors that are known to affect ozone formation processes. So that new and
historical data can easily be compared, the report presents descriptive summary statistics in a
format identical to that of previous NMOC/SNMOC reports. To offer greater insight into the
current data, however, much of the report focuses on topics that previous annual NMOC/SNMOC
reports have not addressed in detail, such as data correlations between concentrations of organic
compounds, ozone, and nitrogen oxides and selected meteorological conditions. These analyses
ultimately should help state environmental agencies better understand the complex interaction of

pollutants in ozone non-attainment areas,

Although extensive, the analyses in this report do not provide a comprehensive account of
aJl factors relevant to ozone formation. To characterize non-attainment areas more completely,

state environmental agencies should not only review air monitoring data, but also evaluate

1-1



emissions trends of ozone precursors and conduct computer simulations of atmospheric transport
of these emissions and photochemical reactions. Therefore, even though this report thoroughly
characterizes the large volume of NMOC/SNMOC monitoring data, additional analyses should be
performed so that the many factors that affect ambient air quality can be fully appreciated. To
facilitate further analysis of the NMOC/SNMOC sampling results, the entire set of ambient air
monitoring data will be available on the Air Quality Subsystem (AQS) of the Aerometric

Information and Retrieval System (AIRS), an electronic database maintained by EPA.

This report is organized into eight sections; Table 1-1 lists the contents of each report
section. Sections 2 and 3 present necessary background information on the monitoring program
and data analysis methodologies, and Sections 4 through 7 summarize and interpret the
monitoring data collected for total NMOC, SNMOC, VOC, and carbonyls. All figures and tables

cited in the text appear at the end of their respective sections (figures first, followed by tables).
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2.0 The 1997 NMOC/SNMOC Monitoring Program

Because it 1s important to understand the scope of any air monitoring program before
interpreting trends and patterns in the corresponding results, this section presents relevant
background information for the 1997 NMOC/SNMOC program. This program included six
monitoring stations that collected 3-hour integrated samples of ambient air according to site-
specific schedules, roughly from June 1 to September 30, 1997. Depending on the monitoring
options that were selected for each station, air samples were analyzed for either total NMOC,
SNMOC and VOC, carbonyls, or some combination of these categories. The following
discussion describes in greater detail the monitoring locations, compounds selected for

monitoring, sampling schedules, and sampling and analytical methods of the program.

2.1 Monitoring Locations

EPA sponsors the NMOC/SNMOC rﬂonitoring program with the intent of helping state
and local air pollution control agencies better understand how the composition of air pollution
affects the formation and transport of ozone within a given region. Agencies can participate in
this program by working cooperatively with EPA to identify suitable monitoring locations, select
classes of compounds for monitoring, install ambient air monitoring equipment, and send
samples to a designated central laboratory for analysis. The participating agencies also must

contribute to the overall monitoring costs.

Figure 2-1 shows the locations of the six 1997 NMOC/SNMOC monitoring stations and
lists their alphanumeric codes, which were assigned for purposes of tracking air samples from the
field to the laboratory. In addition to an alphanumeric code, each location has a unique 9-digit
“AIRS Code” for purposes of logging and indexing site descriptions and monitoring results in
EPA’s AIRS database. For each monitoring location, Table 2-1 lists the alphanumeric codes, the

AIRS codes, and other site information described later in this section.

The six stations participating in the 1997 program were located in three urban areas: the

Dallas—Fort Worth metropolitan area, the El Paso—Juarez area, and the Newark-New York City
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area. Not surprisingly, chemical concentrations measured during the 1997 NMOC/SNMOC
program varied significantly among, and even within, these metropolitan areas. As previous
NMOC/SNMOC reports have concluded, the proximity of the monitoring locations to different
emissions sources, especially heavily traveled roadways, likely explains the observed spatial

variations in ambient air quality.

The maps in Figures 2-2 through 2-7 and the site descriptions in Table 2-2 provide
detailed information on the surroundings at the six NMOC/SNMOC monitoring locations. The

maps illustrate that some monitors were located in primarily residential neighborhoods

(e.g., CAMSS5 and CAMS13), while others were located in more industrial areas (e.g., DLTX and

NWNIJ). For each monitoring location, the text in Table 2-2 describes site characteristics that
may not be readily apparent from the maps. Analyses throughout this report refer to the various
site descriptions to explain trends and patterns in the NMOC/SNMOC ambient air monitoring

data.

At every NMOC/SNMOC monitoring location, the air sampling equipment was installed
in a small enclosure-—usually a trailer or a shed—with sampling inlet probes protruding through
the roof. Using this common setup, every NMOC/SNMOC monitor sampled ambient air at

heights approximately 5 to 20 feet above local ground level.

2.2  Compounds Selected for Monitoring

The agencies that sponsor monitoring locations decide whether their respective stations
measure total NMOC, SNMOC and VOC, carbonyls, or some combination of these categories.
These categories differ from previous monitoring options in one important regard: in previous
years, air samples had to be analyzed using two separate methods to characterize levels of
SNMOC and VOC. During the 1997 program, however, improved laboratory analytical
techniques allowed a single air sample to be concurrently analyzed for both groups of

compounds. With this improvement, the program now provides SNMOC and VOC ambient air
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monitoring data at a cost only marginally higher than that of collecting SNMOC data alone.

Section 2.4 describes the specific improvements to the analytical methods in greater detail.

Table 2-1 indicates the compound groups that sponsoring agencies selected for
monitoring at each of the six stations. Every station at least collected samples that were analyzed
for either total NMOC or SNMOC—the two categories most commonly used as inputs to ozone
forecasting models. Accordingly, most of the interpretations and analyses in this report focus on
these two compound categories, with a lesser emphasis placed on evaluating trends and patterns
among the VOC and carbonyls air monitoring data. Section 2.3 indicates how frequently the
compounds were measured at each site, and Section 2.4 lists the compounds identified by the

four different monitoring options.

2.3 Monitoring Schedules

In addition to selecting locations and compounds for monitoring, the agencies that
sponsor NMOC/SNMOC monitoring locations also determine sampling schedules. Tables 2-1
and 2-3 sumimarize the sampling schedules and sampling frequencies implemented at the six
participating locations. Although the sampling schedules vary across the different compound
categories and monitoring locations, there are some common scheduling trends. For instance,
every station conducted at least some daily sampling, and every station that measured carbonyls
collected fewer than 10 samples. As Section 3.2 indicates, the sampling frequency is an
important consideration for data analyses, mainly because a large number of samples are usually

needed to observe statistically significant trends and patterns.

Despite the differences in sampling frequencies, the sampling schedules implemented at

all 15 monitoring locations have three features in common:

. On each sampling day, ambient air is continuously sampled for 3 hours, starting at
6:00 a.m., local standard time.

. Sampling 18 generally performed between June 1 and September 30.
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. Roughly 10 percent of all samples were collected in duplicate and analyzed in
replicate. :

EPA requires stations to adhere to these three features because (1) many ozone transport
models require ambient concentrations measured between 6:00 a.m. and 9:00 a.m. as an Imput;
(2) ambient air concentrations of ozone are known to peak during the summer months, when
photochemical reactivity also peaks; and (3) duplicate and replicate data are critical for

evaluating the precision of ambient air monitoring data.

2.4  Sampling and Analytical Methods

Sampling and analytical methods used in monitoring programs ultimately determine what
compounds can be identified in air samples, and at what levels. During the 1997
NMOC/SNMOC program, different sampling and analytical methods were used to measure air
concentrations of total NMOC, SNMOC and VOC, and carbonyls. EPA has thoroughly tested
each of these methods, and field engineers for this air monitoring program strictly followed the
documented monitoring procedures. The final report for the 1996 NMOC/SNMOC program
described these sampling and analytical methods in detail (ERG, 1997b), and the following
subsections briefly highlight salient features of the four methods. For quick reference, Table 2-4

summarizes the general attributes (detection limits, units of measurement, etc.) of these methods.

24.1 Total NMOC

Ambient air concentrations of total nonmethane organic compounds were measured using
EPA Compendium Method TO-12 (USEPA, 1988). The TO-12 protocol specifies steps for
collecting 3-hour integrated samples of ambient air in passivated stainless steel canisters, which
are then analyzed by using cryogenic traps and flame ionization detection (FID). This method
cannot distinguish different hydrocarbon species; rather, the analysis measures only the roral
amount of nonmethane hydrocarbons in the air sample, or total NMOC, Concentrations are
reported in units of parts per billion on a carbon basis (ppbC) (see sidebar, “The Importance of

Units of Measurement”) and the detection limit for this method is approximately 5 ppbC.



The Importance of Units of Measurement

Units of measurement express results of scientific analyses in standard formats. The units
used in a particular study, however, depend largely on the conventions followed by other
researchers within a particular scientific field. In ambient air monitoring efforts, for example,
scientists typically report air concentrations using several different units of measurement, such
as parts per billion on a volume basis (ppbv) and parts per billion on a carbon basis (ppbC).
This report adopts the conventions EPA (USEPA, 1988, 1989) and other air monitoring
researchers employ, expressing NMOC and SNMOC monitoring data in units of ppbC and
expressing VOC and carbonyl monitoring data in units of ppbv. For a given compound,
concentrations can be converted between these different units of measurement according to the
following equation:

Concentration (ppbC) = Concentration (ppbv) x Number of Carbons

As an example, benzene (CHy) has six carbon atoms. Therefore, by definition, a
concentration of benzene of 6.0 ppbC also equals a concentration of benzene of 1.0 ppbv.
Because failure to consider subtle differences in units of measurement can result in significant
misinterpretations of ambient air monitoring results, readers of this report should pay
particular attention to the units of measurement, especially when comparing the monitoring
results to those of other studies. To avoid any confusion, every table and figure in this report
that presents monitoring results clearly indicates the corresponding units of measurement.

24.2 SNMOC

Ambient air concentrations of SNMOC were measured according to EPA’s research
protocol “Determination of C, through C,, Ambient Air Hydrocarbons in 39 U.S. Cities from
1984 through 1986” (USEPA, 1989). Like the NMOC sampling and analytical method, the
SNMOC method requires collecting ambient air in passivated stainless steel canisters. Unlike
the NMOC approach, the SNMOC analytical method involves passing the collected samples
through a gas chromatography (GC) column that separates individual hydrocarbon species before
measuring concentrations with the FID. Because of this additional step, the FID can measure
ambient air concentrations of individual organic compounds, as well as measuring total organic
compounds. The GC column used during this program distinguishes 80 different compounds,

which are listed, along with their estimated detection limits, in Table 2-5 (sce sidebar,
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Appreciating Detection Limits

The detection limit of an analytical method plays an important role in interpreting ambient air
monitoring data. By definition, detection limits represent the lowest levels at which laboratory
equipment can reliably quantify concentrations of selected compounds to a specific confidence
level. Therefore, when samples contain concentrations of chemicals at levels below those
chemicals® detection limits, multiple analyses of the same sample may lead to a wide range of
results, including highly variable concentrations and “nondetect”™ observations. To interpret air
monitoring data in the proper context, data analysts should understand that the variability of
analytical methods increases as sample concentrations decrease to trace levels. Because some
of the SNMOC, VOC, and carbonyl compounds have numerous nondetects, the significance of
appreciating detection limits is revisited throughout this report.

For reference, the estimated detection limits for the NMOC, SNMOC, VOC, and carbonyl
analytical methods were all determined according to EPA guidance in “Definition and
Procedure for the Determination of the Method Detection Limit” (FR, 1984).

“Appreciating Detection Limits”). Like the NMOC concentrations, the SNMOC concentrations
are expressed 1n units of ppbC—a convention typically followed for measurements involving

FID.

It should be noted that the GC column used to analyze samples from the 1997
NMOC/SNMOC program was capable of differentiating concentrations of acetylene from
concentrations of ethane, and the GC column used previously could not separate these

compounds.

243 VOC

Ambient air concentrations of selected VOC were measured using EPA Compendium
Method TO-14 (USEPA, 19842). Sampling for this method follows the same protocol as the
NMOC and SNMOC methods: ambient air is collected in the field in passivated stainless steel
canisters. The analytical method for VOC differs from the other methods, as the sampled air
passes through a gas chromatography column with mass selective detection and flame ionization
detection (GC/MSD-FID). This particular combination of analytical techniques enables

measurement of concentrations of 38 different organic compounds, many of which (such as
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halogenated hydrocarbons) cannot be measured using the other sampling and analytical methods.
Table 2-6 lists these 38 compounds along with their respective detection limits. All

concentrations of VOC are reported in units of ppbv.

During the 1997 NMOC/SNMOC program, the laboratory analytical equipment for the
SNMOC and VOC methods was combined. With this improvement, technicians could
simultaneously analyze a single ambient air sample for both the 80 target SNMOC and the
38 target VOC. Therefore, the 1997 NMOC/SNMOC program has essentially three monitoring
options—NMOC, SNMOC and VOC, and carbonyls.

2.4.4 Carbonyls

Following the specifications of EPA Compendium Method TO-11 (USEPA, 1984b),
carbonyl compounds were measured by passing ambient air over silica gel cartridges coated with
2,4-dinitrophenylhydrazine (DNPH), a compound known to react reversibly with many aldehydes
and ketones. For chemical analysis, sampling cartridges were eluted with acetonitrile, which
liberates hydrazine derivatives of the aldehydes and ketones collected from the ambient air by the
DNPH-coated silica gel matrix. Analyzing the acetonitrile solution by high-performance liquid
chromatography (HPLC) with ultraviolet (UV) detection then determines the amount of
carbonyls present in the original air sample. This procedure currently detects 16 different

carbonyl compounds. Table 2-7 lists these compounds and their corresponding detection limits.
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Figure 2-2
Dallas, Texas (CAMSS), Monitoring Station
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Figure 2-3
Fort Worth, Texas (CAMS13), Monitoring Station




Figure 2-4
Dallas, Texas (DLTX), Monitoring Station
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Figure 2-5
Juarez, Mexico (JUMX), Monitoring Station
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Figure 2-6
Long Island, New York (LINY), Monitoring Station
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Figure 2-7
Newark, New Jersey (NWNJ), Monitoring Station
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Table 2-3

Sampling Schedules Implemented During the 1997 NMOC/SNMOC Programv

Monitoring Monijtoring .
Option Location Sampling Schedules
Long Island, NY | Both sites sampled NMOC every weekday of the
NMOC o .

Newark, NJ monitoring program, except holidays.

Dallas (1), TX These sites sampled SNMOC every weekday of the

Dallas (2), TX monitoring program, except holidays. All samples were

Fort Worth, TX analyzed for both the 80 target SNMOC and the 38 target
VOC.
This site sampled SNMOC every weekday from July 15 to

SNMOC | Juarez, Mexico September 30, 1997. All samples were analyzed for both

the target SNMOC and VOC.
This site sampled SNMOC roughly once a week from

Newark, NJ July 15 to Septemb.er 12, 1997. Nine samples were
collected, all of which were analyzed for both SNMOC and
VOC.

Dallas (1), TX

Dallas (2), TX These sites collected between seven and nine carbonyl

Carbonyl [ Fort Worth, TX samples over the course of the entire program, according to
Juarez, Mexico site-specific schedules.
Newark, NJ

Note:  Unless otherwise noted, “the entire program” refers to June 1 through September 30, 1997.
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Table 2-5

SNMOC Detection Limits
Compound Detection Limit Compound Detection Limit
(ppbC) (ppbC)
Acetylene 0.62 3-Methyl-1-Butene 0.37
Benzene 2.13 Methylcyclohexane 3.72
1,3-Butadiene 0.20 Methylcyclopentane 2.13
n-Butane 0.20 2-Methylheptane 4.73
cis-2-Butene 0.20 3-Methylheptane 4.73
trans-2-Butene 0.20 2-Methylhexane 3.72
Cyclohexane 2.13 3-Methylhexane 3.72
Cyclopentane 0.37 2-Methylpentane 2.13
Cyclopentene 0.37 3-Methylpentane 2.13
n-Decane 4.60 2-Methyl-1-Pentene 2.13
1-Decene 4.60 4-Methyl-1-Pentene 213
m-Diethylbenzene 4.60 n-Nonane 4.60
p-Diethylbenzene 4.60 1-Nonene 4.60
2,2-Dimethylbutane 2.13 n-Octane 4.73
2,3-Dimethylbutane 2.13 1-Octene 4,73
2,3-Dimethylpentane 372 n-Pentane 0.37
2,4-Dimethylpentane 372 1-Pentene 0.37
n-Dodecane 4.60 cis-2-Pentene 0.37
1-Dodecene 4.60 trans-2-Pentene 0.37
Ethane 0.62 a-Pinene 4.60
2-Ethyl-1-Butene 2.13 b-Pinene 4,60
Ethylbenzene 4.73 Propane 0.31
Ethylene 0.62 n-Propylbenzene 4.60
m-Ethyltoluene 4.60 Propylene 031
o-Ethyltoluene 4.60 Propyne 0.31
p-Ethyltolucne 4.60 Styrene 473
n-Heptane 372 Toluene 3.72
1-Heptene 3.72 n-Tridecane 4.60
n-Hexane 2.13 1-Tridecene 4.60
1-Hexene 2.13 1.2,3-Trimethylbenzene 4.60
cis-2-Hexene 2.13 1,2.4-Trimethylbenzene 4.60
trans-2-Hexene 2.13 1,3,5-Trimethylbenzene 4.60
Isobutane 0.20 2.2, 3-Trimethylpentane 4.73
Isobutene/1-Butene 0.20 2,2,4-Trimethylpentane 4.73
Isopentane 0.37 2,3 ,4-Trimethylpentane 4.73
Isoprene 0.37 n-Undecane 4.60
Isopropylbenzene 4.60 1-Undecene 4.60
2-Methyl-1-Butene 0.37 m,p-Xylene 4.73
2-Methyl-2-Butene 0.37 o-Xylene 4.73

Reference: FR, 1984.
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Table 2-6
VOC Detection Limits
Compound Detection Limit (ppbv)
Acctylene 0.10
Benzene 0.07
Bromochloromethane 0.09
Bromeodichloromethane 0.05
Bromoform 0.15
Bromomethane 0.14
1,3-Butadiene 0.09
Carbon tetrachloride 0.05
Chlorobenzene 0.07
Chloroethane 0.06
Chloroform 0.06
Chloromethane 0.13
Chloroprene 0.10
Dibromochloromethane 0.05
m-Dichlorobenzene 0.15
o-Dichlorobenzene 0.16
p-Dichlorobenzene 0.13
1,1-Dichloroethane 0.06
1,2-Dichloroethane 0.26
trans-1,2-Dichloroethylene 0.22
1,2-Dichloropropane 0.04
cis-1,3-Dichloropropylene 0.05
trans-1,3-Dichloropropylene 0.08
Ethylbenzene 0.12
Methylene chloride 0.09
n-Octane 0.21
Propylene 0.10
Styrene 0.10
1,1,2,2-Tetrachloroethane 0.16
Tetrachloroethylene 0.22
Toluene 0.21
1,1,1-Trichloroethane 0.33
1,1,2-Trichloroethane 0.05
Trichloroethylene 0.04
Vinyl chloride 0.06
m,p-Xylene 0.11
o-Xylene 0.10

Reference: FR, 1984
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Table 2-7
Carbonyl Detection Limits
Compound Detection Limit (ppbv)
Acetaldehyde 0.008
Acetone 0.005
Acrolein 0.010
Benzaldehyde 0.005
Butyr/Isobutyraldehyde 0.009
Crotonaldehyde 0.008
2,5-Dimethylbenzaldehyde 0.010
Formaldehyde 0.006
Hexanaldehyde 0.008
Isovaleraldehyde 0.020
Propionaldehyde - 0.004
Tolualdehydes 0.019
Valeraldehyde 0.013

Note:  The carbonyl detection limit varies with the volume of ambient air drawn through the sampling
apparatus. The detection limits in this table are based on a sample volume of 1,000 liters of ambient
air. .

Reference: FR, 1984.
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3.0  Data Analysis Methodology

This section presents the methodology used to summarize and interpret the 1997
NMOC/SNMOC ambient air monitoring data for this report, including both data analysis
‘techniques that have been used in previous NMOC/SNMOC reports (e.g., data summary
parameters) and techniques that have not been used previously (e.g., comparisons between
NMOC/SNMOC measurements and ambient air concentrations of ozone). In general, three

categories of analyses have been used to identify notable data trends and patterns:

. Dara summary parameters, to provide a succinet overview of the monitoring data
(see Section 3.1)

. Analyses and interpretations, to identify significant spatial variations, temporal
variations, and statistical correlations (see Section 3.2)

. Data quality parameters, to comment on the validity of the interpretations (see
Section 3.3)

The remainder of this section describes these three categories of data analysis
methodology. Sections 4 through 7 then use this methodology to thoroughly characterize the
NMOC, SNMOC, VOC, and carbonyl monitoring data, respectively.

31 Data Summary Parameters

Since previous NMOC/SNMOC reports describe in detail the four parameters that have
been used to summarize this program’s monitoring data, the following discussion briefly reviews
how these parameters efficiently characterize the results of extensive ambient air monitoring
studies. The four summary parameters—prevalence, concentration range, central tendency, and
variability-—are used to provide a complete but succinct overview of the nearly 50,000 ambient
air concentrations that were measured during the 1997 NMOC/SNMOC program. Sections 4
through 7 present these summary paraméters in a series of tables, one for each monitoring
location for each category of compounds. Brief definitions and descriptions of these summary

parameters follow:
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. Prevalence of air monitoring data refers to the frequency with which compounds,
or groups of compounds, are detected; it is typically expressed as a percentage
(e.g.. a compound detected in 15 of 20 samples has a prevalence of 75 percent).
Compounds that are never detected have a prevalence of 0 percent, and those that
are always detected have a prevalence of 100 percent. Because sampling and
analytical methods cannot reliably quantify concentrations of compounds at levels
near their detection limits, summary statistics for compounds with Jow prevalence
values should be interpreted with caution. Compounds with a prevalence of zero
may still be present in ambient air, but at levels below the sensitivity of the
corresponding sampling and analytical methods.

. The concentration range of ambient air monitoring data refers to the span of
measured concentrations, from lowest to highest. Because the NMOC/SNMOC
program only measures 3-hour average concentrations during the summer months,
the lowest and highest concentrations may not be comparable to those from
monitoring programs with different sampling durations and schedules. Ambient
air concentrations of hydrocarbons, VOC, and carbonyls may rise to higher levels
during other times of the day and other times of the year.

. The central tendency of air monitoring data gives a sense of the long-term average
ambient air concentrations. This report uses medians, arithmetic means, and
geometric means to characterize the central tendencies of concentration
distributions. Previous NMOC/SNMOC reports have explained the differences
between these measures of central tendency. The central tendencies in this report
are based only on ambient air concentrations sampled during the summer of 1997.
Because ambient air concentrations of compounds may increase or decrease
during the colder winter months, the central tendencies presented in this report
may not be comparable to those calculated from annual air monitoring efforts.

. Variability in ambient air monitoring data indicates the extent to which
concentrations of certain compounds fluctuate with respect to the central
tendency. This report characterizes data variability using standard deviations and
coefficients of variation. The standard deviation is a commonly used statistical
parameter that provides an absolute indicator of variability, and the coefficient of
variation (calculated by dividing the standard deviation by the arithmetic mean)
offers a relative indicator of variability. The coefficient of variation is better
suited for comparing variability across data distributions for different sites and
compounds.

All data summary parameters presented in this report were calculated from a database of

processed 1997 NMOC/SNMOC ambient air monitoring data. This database was generated by
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manipulating the raw monitoring data to assign all nondetect observations a concentration equal
to one-half the corresponding detection limit. The results of all duplicate sampling events and
replicate laboratory analyses were averaged so that only one concentration was considered for
each compound for each sampling date. These data processing steps are identical to those

described in the 1996 NMOC/SNMOC final report.

3.2  Analyses and Interpretations

To supplement the trends indicated by the data summary parameters, Sections 4 through 7
also include a series of analyses and interpretations that attempt to explain why measured levels
of air pollution vary from one monitoring location to the next and from one month to the next.
These spatial and‘temporal variations may ultimately provide state and local agencies greater
insight into the factors that affect ozone formation processes most significantly. The following
subsections describe the methods used to identify and interpret the spatial and temporal

variations in the 1997 NMOC/SNMOC monitoring results.

3.2.1 Composition of Air Samples
Like the magnitude of air pollution, the composition varies from one location to the next.
The following discussion explains how the composition of air pollution will be used to

understand and appreciate the sources that contribute to levels of air pollution:

. Composition of alkanes, olefins, and aromatics. This analysis divides the overall
SNMOC monitoring results into contributions from alkanes, olefins, and aromatic
compounds. Such analyses are useful to understanding ozone formation
processes, because current research shows that olefinic and aromatic compounds
are significantly more reactive in air than most alkanes (Carter, 1994). Knowing
the relative abundances of these three classes of hydrocarbons, state
environmental agencies can better focus air pollution prevention policies
specifically on compound categories that have the greatest impact on air quality.
This data analysis approach is used only in Section 5, because the SNMOC
analytical method quantifies concentrations of the most hydrocarbon compounds.

. Ratios of ambient air concentrations of selected aromatic hydrocarbons. This
analysis compares ratios of concentrations of benzene, toluene, and xylene

3-3



1somers to concentrations of ethylbenzene. These aromatic compounds are
commonly referred to as BTEX compounds (i.e., benzene, toluene, ethylbenzene,
and xylene compounds). Previous ambient air monitoring studies of motor
vehicle emussions have reported relatively constant concentration ratios for these
compounds (Conner, Lonneman, Seila, 1995). In this report, BTEX ratios are
used as an indicator of the extent to which emissions from motor vehicles affect
ambient air concentrations at the NMOC/SNMOC monitoring stations. Only
Sections 5 and 6 use this data analysis approach, since only the SNMOC and VOC
analytical methods can quantify concentrations of individual BTEX compounds.

When evaluating the composition of the SNMOC and VOC samples, it is important to
note that “composition” indicates only the relative magnitude of a given compound among the
80 target SNMOC or the 38 target VOC. Because these analytical methods cannot quantify
concentrations of many other common air pollutants (e.g., inorganic acids), the “compositions”
in these analyses are only expressed relative to the list of target compounds and are not

necessarily equivalent to actual compositions of ambient air.

3.2.2 Statistical Analyses

Many of the data analyses in Sections 4 through 6 attempt to quantify the extent to which
two parameters are related to each other. For example, Section 4 describes how wind speed and
temperature appear to affect concentrations of total NMOC. The following discussion describes
how Sections 4 through 6 use Pearson correlation coefficients to measure the degree of

correlation between two variables.!

By definition, Pearson correlation coefficients always lie between -1 and 1. A correlation
coefficient of -1 indicates a perfectly “negative” relationship, and a correlation coefficient of 1
indicates a perfectly “positive” relationship. Negative relationships occur when increases in the
magnitude of one variable are associated with proportionate decreases in the magnitude of the
other variable, and vice versa. On the other hand, positive relationships occur when the

magnitudes of two variables both increase and both decrease proportionately. Data that are

Pearson correlation coefficients are commonly used as a measure of correlation. Details regarding their
calculation can be found in most introductory statistics texts.
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completely uncorrelated have Pearson correlation coefficients of zero. Therefore, the sign
(positive or negative) and the magnitude of Pearson correlation coefficients indicate the direction

and strength, respectively, of data correlations.

Pearson correlation coefficients characterize the extent to which variables are related in a
linear fashion, and the coefficients calculated in this report are only for pairwise correlations
(i.e., correlations between two variables). As a result, the statistical analyses do not characterize
potential nonlinear or multivariate relationships that may be relevant to ozone formation
processes. Nonetheless, Sections 4 through 6 use the correlation coefficients to draw qualitativ‘e
conclusions regarding how different air quality and meteorological parameters relate to each,
other. Section 7 does not present Pearson correlation coefficients, because too few carbonyl

samples were collected to generate statistically significant findings.

3.2.3 Comparison to Selected Meteorological Parameters

Because local meteorological conditions largely determine how rapidly photochemical
reactions consume and produce airborne pollutants and how quickly emissions disperse, Sections
4 through 6 analyze how wind speed, wind direction, temperature, relative humidity, and
precipitation relate to the NMOC, SNMOC, and VOC air monitoring data. These sections use
Pearson correlation coefficients and plot distributions to provide insight into which variables are
most closely linked to air quality data. For each monitoring station, meteorological data were
obtained from the nearest meteorological station that submits daily summary reports to the
National Climatic Data Center. Table 3-1 lists the source of meteorological data for each of the

1997 NMOC/SNMOC ambient air monitoring stations.

This report does not completely characterize how meteorological parameters relate to air
quality. More sophisticated analyses, such as detailed atmospheric dispersion modeling for every
monitoring location, are beyond the scope of the current work. Further, this report does not
address other meteorological parameters (such as mixing heights and upper atmosphere wind

patterns) that are known to affect long-range transport of ozone or ozone precursors. These
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additional parameters were not readily available for every monitoring station at the writing of this

report.

3.24 Comparison to Concentrations of Ozone and Nitrogen Oxides (NO,)

EPA and many research scientists have long known that a complex series of
photochemical reactions involving airborne hydrocarbons and NO, form ozone in the
stratosphere (i.e., the lowest layer of the atmosphere, or the air that humans breathe) (USEPA,
1998). To provide state environmental agencies greater insight into the relationship between
ambient air concentrations of hydrocarbons, ozone, and NO,, Sections 4 and 5 of this report use

two data analysis techniques to assess concentrations of these compounds:

. First, the sections present matrices of Pearson correlation coefficients for the
measured NMOC or SNMOC concentrations, daily peak NO, concentrations, and
daily peak ozone concentrations. These calculations were performed to determine
whether ambient air concentrations of the different pollutants tend to rise and fall
on the same days. Readers should note that Sections 4 and 5 discuss important
limitations to these analyses.

. Second, the sections compare peak concentrations of ozone to ratios of NMOC to
NO, concentrations. Previous studies have shown that NMOC:NO, ratios may
correlate better with maximum ozone concentrations than do the concentrations of
either NMOC or NO, (USEPA, 1996). These studies also have used analyses of
these ratios, along with several other corroborative analyses, to predict the
effectiveness of hydrocarbon controls and NO, controls at reducing levels of
ozone.

Although general conclusions are drawn from the analyses described above, readers
should note that ozone formation processes are extremely complex, and much more sophisticated
analyses are needed to fully understand photochemical smog in urban areas. Examples of such
additional analyses include rigorous regional photochemical modeling efforts, compilation of
comprehensive emissions inventories, and evaluations of long-range transport and vertical

mixing mechanisms.
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Table 3-1 lists the sources of ozone and NO, monitoring data for the analyses in Sections
4 and 5. For each NMOC/SNMOC monitoring station, this report considers ozone and NO,
monitoring data from the closest ambient air monitoring station that submitted 1997 air quality
results to EPA’s AIRS database. For some sites (CAMSS, CAMS13, and DLTX), ozone and
NO, monitoring data were collected at exactly the same location as the NMOC/SNMOC data.
For the other sites (JUMX, LINY, and NWNI), ozone or NO, monitoring data from nearby
stations are used in the data analyses, because these pollutants either were not measured at the

NMOC/SNMOC monitoring station or their monitoring results are not currently listed in AIRS.

Note: All ozone and NO, monitoring data considered in this report were collected under
programs other than the NMOC/SNMOC Monitoring Program. The precision and

accuracy of these ozone and NO, monitoring data are not known.

3.2.5 Temporal Variations

Because the NMOC/SNMOC monitoring stations sample ambient air only from 6:00 to
9:00 a.m. during the summer months, the monitoring data in this report are insufficient to
evaluate diurnal or seasonal changes in air quality. Nonetheless, these data are useful for
considering changes in air quality from one summer month to the next. Further, since several of
the current monitoring stations participated in previous NMOC/SNMOC monitoring programs,
the monitoring data also can be used to evaluate how air quality changes on longer time scales.
Sections 4 through 6 focus strictly on monthly variations in measured air concentrations. Section
7 does not consider any temporal variations, however, because stations do not collect enough

carbonyl samples to conduct a statistically meaningful analysis of monthly variations.

Although this report will not consider annual variations, readers should note that the final
report for the 1998 NMOC/SNMOC monitoring program will focus almost exclusively on
analyzing temporal variations—particularly annual variations—for every monitoring location,

and the report will place lesser emphasis on evaluating spatial variations. Such analyses should
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help participating agencies assess the effectiveness of relevant pollution control strategies on

long-term changes in air quality.

3.3  Data Quality Parameters

To characterize the quality of the 1997 NMOC/SNMOC monitoring measurements,
Sections 4 through 7 review the completeness, precision, and accuracy of the corresponding
sampling and analytical methods. Because the final report for the 1996 program thoroughly
describes these data quality parameters, the following paragraphs only define them and briefly

discuss their significance.

3.3.1 Completeness

The completeness of ambient air monitoring programs refers to the fraction of attempted
sampling events that yields valid results (i.e., either quantified concentrations or nondetects).
Due to a variety of sampling or analytical errors, not all the samples for the various monitoring
options were collected and analyzed as scheduled. Although completeness data do not quantify
the precision or accuracy of the monitoring methods, they do indicate how efficiently samples
were collected and handled during the program. Coordinators of the SNMOC monitoring
program generally strive for program completeness greater than 90 percent. Sections 4 through 6
present completeness data for NMOC, SNMOC, and VOC sampling; Section 7 does not present
completeness results because the carbonyl monitoring option involves collecting and analyzing

air samples on fewer than 10 sampling dates. .

3.3.2 Precision

In the context of ambient air monitoring, precision refers to the agreement between
independent air samplirig measurements performed according to identical protocols and
procedures. More specifically, precision measures the variability observed upon duplicate
collection or repeated analysis of ambient air samples. This report compares concentrations from
replicate analyses to quantify “analytical precision” and concentrations from duplicate samples to

quantify “sampling precision.” For any pair of duplicate samples or replicate analyses, precision
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is quantified by computing a relative percent difference (RPD), which is defined and described 1n
detail in previous NMOC/SNMOC reports. As the earlier reports explain, highly precise ambient
air monitoring studies have lower RPDs, while highly imprecise or variable studies have higher
RPDs. Analytical methods for most ambient air monitoring methods should have RPDs of 25
percent or less. Sections 4 through 7 present precision data for the four corresponding

monitoring methods.

3.3.3 Accuracy

Accuracy of monitoring programs indicates the extent to which measured concentrations
represent their corresponding “true” or “actual” values. Highly accurate air sampling and
analytical methods generally measure concentrations in very close agreement to actual ambient
levels. Because no external audit samples were provided during the 1997 NMOC/SNMOC
program, it is impossible to quantify the accuracy of the air monitoring data. However, since all
field sampling staff and laboratory analysts strictly followed established quality control and
quality assurance guidelines, it is believed that all samples were collected and analyzed according

to the specifications of the respective monitoring methods.
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4,0  Analysis of Total NMOC Monitoring Results

This section summarizes and interprets the total NMOC monitoring data collected at
Long Island and Newark during the 1997 NMOC/SNMOC program. As Section 2.4 explained,
the total NMOC sampling and analytical method detects a wide range of organic compounds
(¢.g., alkanes, olefins, aromatics, oxygenates, halogenated hydrocarbons), thus measuring overall
levels of the air pollution that is known to affect ozone formation processes. This method does
not characterize fotal levels of air pollution, because the method does not detect common air
pollutants such as inorganic acids, particulate matter, and heavier organic compounds. The
following discussion uses the data analysis methodology presented in Section 3 to identify
noteworthy trends in the NMOC monitoring data. For quick reference, Section 4.4 reviews the

muost significant findings.

Note: The SNMOC analytical method also measures the concentration of total NMOC. Section
5.1 summarizes the total NMOC concentrations that were measured at the Dallas, Fort

Worth, and Juarez monitoring stations by the SNMOC analytical method.

4.1  Data Summary Tables

Using the data summary parameters discussed in Section 3.1, Table 4-1 summarizes the
total NMOC monitoring results collected at the Long Island and Newark monitoring stations.
The table also presents quartiles of the NMOC concentration distributions measured at these

stations. An overview of these summary parameters follows:

. Prevalence. Every total NMOC concentration measured during the 1997 program
was at least an order of magnitude greater than the estimated method detection
limit, 0.005 ppmC (or 5 ppbC). Because measurement variability of air
monitoring methods is typically lowest for concentrations significantly greater
than their detection limits, the NMOC results are expected to be highly precise.
Section 4.3 confirms this hypothesis.

. Concentration range. According to Table 4-1, NMOC concentrations at Long

Island during the 1997 program ranged from 0.054 ppmC to 0.898 ppmC, and at
Newark from 0.086 ppmC to 2.139 ppmC. The quartiles of the concentration
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distributions suggest that the entire distribution at Newark was roughly twice as
high as that for Long Island (i.e., the 25th, 50th, and 75th percentile
concentrations for the two sites all differed by approximately a factor of two). At
both sites, the maximum concentration is at least 30 percent higher than the
second highest concentration, suggesting that the peak concentrations shown in
Table 4-1 probably represent air pollution “episodes,” as opposed to regularly
occurring events. Only three NMOC concentrations at Newark—2.139 ppmC on
August 19, 1.404 ppmC on June 25, and 1.054 on September 17—exceeded the
maximum concentration measured at Long Island.

Central tendency. Consistent with findings from previous NMOC/SNMOC
reports, the central tendency NMOC concentration measured at Long Island is
notably lower than that measured at Newark. Further, NMOC concentrations at
Long Island during the 1997 program (geometric mean of 0.219 ppmC) were
nearly 25 percent lower than the levels reported during the 1996 program
(geometric mean of 0.290 ppmC). Similarly, levels of NMOC at Newark have
decreased by 7 percent over the same time frame—ifrom 0.389 ppmC in 1996 to
0.360 ppmC in 1997. As Section 3 noted, the final report for the 1998
NMOC/SNMOC program will include a much more detailed analysis of long-
term changes in air quality.

Variability. Consistent with findings from previous NMOC/SNMOC monitoring
efforts, the standard deviations of the measured NMOC concentrations at both
Long Island and Newark are nearly two thirds of their corresponding arithmetic
mean concentrations. Variability of NMOC concentrations at Long Island and
Newark is relatively similar, as indicated by the similarity of the coefficients of
variation.

Analyses and Interpretations

To provide greater insight into the trends and patterns among the total NMOC
concentrations at Long Island and Newark, the following sections compare the measured levels
of NMOC to selected meteorological conditions (Section 4.2.1), to conécntrationslof ozone and

NO, (Section 4.2.2), and to the month of the monitoring program (Section 4.2.3).

4.2.1 Comparison to Selected Meteorological Conditions
Sections 4.2.1.1 and 4.2.1.2 assess how local humidity, precipitation, temperature, wind
direction, and wind speed relate to the NMOC concentrations measured at Long Island and

Newark. These sections compare 3-hour average observations of meteorological parameters
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measured between 6:00 and 9:00 a.m. to the corresponding air quality measurements. As Table
3-1 notes, meteorological data from the John F. Kennedy International Airport and the Newark
International Airport were considered for the Long Island and Newark monitoring stations,
respectively. Due to the close proximity of these meteorological stations to the NMOC/SNMOC
monitoring stations, the meteorological data are believed to be representative of conditions at the

LINY and NWNT stations.

4.2.1.1 Comparisons for Long Island, NY

Two different graphical techniques were used to compare meteorological conditions to
NMOC concentrations: Figure 4-1 presents the average NMOC concentrations that were
observed during different meteorological conditions; and Figure 4-2 presents a scatter plot
showing the wind direction and NMOC concentration for every valid sampling date.

Interpretations of these figures follow:

. Humidiry. According to Figure 4-1, NMOC concentrations on mornings when the
relative humidity was less than 60 percent were, on average, nearly 1.5 times
higher than NMOC concentrations on mornings with relative humidity greater
than or equal to 60 percent. This finding, which was observed to a certain extent
at every monitoring station in the 1997 program, suggests that levels of
hydrocarbon air pollution during the morning hours at LINY are relatively lower
on more humid days. The reason for this trend is not known, but may be related
to the fact that some fraction of airborne organic compounds partition into
aerosols, particularly on humid days. These aerosols, along with any dissolved
hydrocarbons, may then be removed from ambient air by deposition. Another
possible explanation is that photochemical reactivity, which generally consumes
airborne hydrocarbons, may be higher on humid days, possibly due to higher
concentrations of hydroxyl radicals. Further research is need to confirm the
reason (or reasons) why the measured levels of NMOC are lowest on the most
humid days.

. Precipitation. To evaluate the effects of precipitation, Figure 4-1 compares the
average NMOC concentration for samples collected during periods with at least
0.1 inch of rain to the average NMOC concentration collected during periods with
no measurable rain. The figure shows that NMOC concentrations measured
during precipitation events were roughly three times lower than those measured
during periods of no precipitation. This finding is consistent with “wet
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deposition” algorithms in EPA-approved dispersion models, which predict that
precipitation events remove a portion of airborne gases and particles from ambient
air (USEPA, 1995). It should be noted that measurable precipitation occurred
during only 4 of the 81 valid sampling events at LINY, which limits the statistical
significance of the graph shown in Figure 4-1.

Temperature, Although Figure 4-1 suggests that NMOC concentrations measured
on relatively warm mornings tend to be higher than those measured on cooler
mornings, the 1996 NMOC/SNMOC final report found NMOC concentrations at
LINY to be completely uncorrelated with temperature. Therefore, it is unclear
whether concentrations of hydrocarbons at LINY always increase with
temperature, as the 1997 NMOC/SNMOC data suggest.

Wind Speed. Figure 4-1 indicates that NMOC concentrations measured during
periods with average wind speeds greater than 12 miles per hour (mph) are
approximately 1.5 times lower than NMOC concentrations measured during all
other times. This observation also is consistent with EPA-approved atmospheric
dispersion algorithms, which suggest that pollutants disperse more efficiently as
wind speeds increase (USEPA, 1995).

Wind Direction. The scatter plot in Figure 4-2 shows how measured NMOC
concentrations varied with wind direction. Results from nine valid sample dates
are not displayed in the figure, because winds were variable while these samples
were collected. Since relatively high and relatively low NMOC concentrations are
observed for most wind directions, it is unclear whether higher levels of airborne
hydrocarbons tend to be linked to winds blowing from any single direction. The
absence of strong correlations between wind direction and NMOC concentration
suggests that many different sources located around the LINY monitoring station,
as opposed to one or a few sources, most likely contribute to the measured
concentrations. This hypothesis is consistent with a general finding of the 1996
NMOC/SNMOC report: ambient air concentrations of NMOC appear to be
linked more closely to emissions from motor vehicles than to emissions from
industrial sources.

Although the previous analyses provide some insight into how selected meteorological
conditions relate to levels of air pollution, it is important to note that NMOC concentrations are a
measure of the overall level of air pollution and, therefore, are affected by numerous factors in
addition to those considered above. The analyses presented later in this section attempt to

provide a more complete characterization of the NMOC monitoring data collected at LINY.



4.2.1.2 Comparisons for Newark, NJ
Following the same approach as used for the LINY monitoring station, Figures 4-3 and
4-4 compare NMOC concentrations from the NWNJ monitoring station to local meteorological

conditions. A summary of the data in these figures follows:

. Humidity. Consistent with the findings for Long Island, Figure 4-3 shows that
NMOC concentrations measured at Newark tended to be lowest -on the most
humid days. As noted earlier, the reasons why NMOC concentrations tend to
decrease with increasing humidity is not known.

. Precipitation. Also consistent with the findings for Long Island, levels of NMOC
at Newark were notably lower during rainfall events than during periods of no
measurable precipitation. This trend is most likely explained by wet deposition of
airborne pollutants. As Section 5.2 describes, this trend was also observed at the
four SNMOC air monitoring stations.

. Temperature. No trends are apparent from comparing temperature data and
NMOC monitoring data at Newark, as shown in Figure 4-3. One notable feature
of this figure 1s the lack of correlation between the two parameters.

. Wind Speed. Figure 4-3 clearly indicates that NMOC concentrations in Newark
decrease significantly with increasing wind speed. In fact, the average NMOC
concentration measured on mornings when wind speeds were greater than 12 mph
was roughly 3 times lower than the average NMOC concentration measured when
wind speeds were less than or equal to 4 mph. This analysis suggests that higher
wind speeds in the Newark area effectively disperse hydrocarbon emissions from
local sources.

. Wind Direction. According to Figure 4-4, NMOC concentrations ranging from
0.1 ppmC 10 0.5 ppmC were detected at the Newark station when winds were
blowing from virtually every compass direction. This observation suggests that
some sources of NMOC (most likely automobiles) exist all around the NWNJ
monitoring station. Figure 4-4 provides some evidence of a relationship between
elevated concentrations of NMOC and wind direction: almost every NMOC
concentration greater than 0.5 ppmC occurred when winds blew either from the
north to northeast (i.e., wind directions between 0° and 60°) or from the west to
northwest (i.e., wind directions between 270° and 300°). Although this
relationship may be explained by certain industrial emissions sources located near
the NWNTJ monitoring station, comparisons between wind direction and NMOC
concentration for previous and future years are needed to confirm that the
relationship shown in Figure 4-4 is not anomalous.
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4.2.2 Comparison to Concentrations of Ozone and NO,

Historically, sponsoring agencies have used NMOC monitoring data for a variety of
purposes, but typically as inputs to regional ozone forecasting models. Although these models
are certainly useful for predicting and characterizing ozone episodes, comparisons of
concentrations of NMOC, ozone, and NO, can also be useful for appreciating the complex
interaction between these pollutants. The following discussion reviews selected data correlations
(Section 4.2.2.1), compares the highest concentrations of the different pollutants
(Section 4.2.2.2), and evaluates the ratios between NMOC and NO, (Section 4.2.2.3) to offer

sponsoring agencies additional insight into air quality within their jurisdictions.

4.2.2.1 Data Correlations

As Section 3.2.2 described, Pearson correlation coefficients characterize the direction and
strength of correlations between two sets of data. Table 4-2 lists the coefficients that were
calculated to determine the extent to which ambient air concentrations of NMOC, ozone,
nitrogen dioxide (NO,), and NO, are related. The correlation coefficients suggest that ambient
levels of ozone in Newark and Long Island appeared to be most closely related to ambient levels
of NO, and NO,, respectively; however, note two important limitations to this finding: (1) None
of the correlations was strong enough (i.e., close enough to 1 or -1) to indicate that any single
variable was solely responsible for increases and decreases in ozone concentrations—a finding
that confirms that many different variables contribute to ozone formation process. (2) The
correlation analysis considered only 3-hour average concentrations of NMOC, and maximum
daily 1-hour average concentrations of ozone, NO,, and NO,. Different correlations may be

found by considering different averaging times for these pollutants.

4.2.2.2 Comparison of Highest Concentrations
At the beginning of the 1997 NMOC/SNMOC program, EPA required that maximum
hourly concentrations of ozone be lower than the NAAQS of 0.120 ppm. (EPA’s standard has

since changed to an 8-hour average concentration of ozone of 0.08 ppm.) To determine whether



peak levels of ozone are related to concentrations of any precursor pollutant, Table 4-3 lists, for
both Newark and Long Island, the ten dates having the ten highest maximum hourly ozone
concentrations, the ten dates having the highest 3-hour average total NMOC concentrations, the
ten dates having the highest maximum hourly NO, concentrations, and the ten dates having the
highest maximum hourly NO, concentrations. This tabulation was performed to determine
whether elevated ozone concentrations tended to occur on dates when other pollutants also

peaked', and results of this tabulation follow:

Long Island. Of the ten dates with the highest ozone concentrations, three
occurred on dates when 3-hour average NMOC concentrations ranked among the
top ten, and three also occurred when maximum hourly NO, concentrations
peaked. None of the dates with highest NO, concentrations coincided with dates
with elevated ozone levels. These observations provide some evidence of a
correspondence between peak NMOC and NQ, concentrations and peak ozone
concentrations near the Long Island station. However, neither NMOC or NO,
peak levels were entirely consistent with the highest ozone concentrations. Thus,
NMOC and NO, peak concentrations have some similarities to peak ozone
concentrations, but neither NMOC nor NO, levels by themselves indicate when
ozone levels will peak.

Newark. As with Long Island, the ten dates with the highest ozone concentrations
at Newark did not correspond exactly with dates of relatively high concentrations
of NMOC, NO,, or NO,. However, peak levels of ozone appeared to be more
highly correlated to NO, concentrations at Newark than at Long Island. Future
data analyses should be conducted to determine the extent to which maximum
concentrations of NO, at Newark indicate the likelihood of observing a peak
0zone concentration.

Evidence of regional effects. Of the ten dates with highest concenirations of
ozone at Long Island, eight correspond to dates with highest concentrations at
Newark. This correspondence suggests that elevated concentrations of ozone are
a regional issue, but these data are insufficient to determine the extent to which
ozone transport between the monitoring locations occurs. It should be noted that
the dates of peak NMOC, NO,, and NO, concentrations were notably different
between the Long Island and Newark monitoring stations.

1 - P - . - N P
This analysis is not redundant with the evaluation of Pearson correlation coefficients, because 1t is
possible for different pollutants to have their peak concentrations highly correlated, without having highly correlated
concentrations at lower levels.
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Like the analysis of Pearson correlation coefficients, the analysis of peak concentrations
of ozone and its precursors offers only a simplified view of a complicated physical and chemical
process. Not surprisingly, the analysis of peak concentrations cannot identify patterns among the
data that are predictive of ozone concentrations, although this analysis identifies some

consistencies between ozone, NMOC, NO,, and NO, monitoring data.

4.2.2.3 Ratios of NMOC to NO,

Recent EPA studies have reported that the ratio of NMOC concentration to NO,
concentration (hereinafter referred to as NMOC:NO,) may be a useful indicator of ozone
formation potential (USEPA, 1996a; 1996b). More specifically, these studies suggest that
airsheds with NMOC:NO, in the morning less than 5 ppbC/ppb? are “hydrocarbon limited,” and
variations in concentrations of NO, in these regions are expected to have little effect on ozone
formation. On the other hand, airsheds with ratios in the morning greater than 15 ppbC/ppb are
“NO, limited,” and changes in levels of hydrocarbons are similarly expected to have little effect
on ozone formation (USEPA, 1996a). However, one of the EPA studies lists several limitations
to this empirical model and recommends that data analysts not base conclusions and derive ozone

control strategies solely on observed levels of NMOC:NO, (USEPA, 1996b).

To apply this empirical approach to the NMOC monitoring data, NMOC:NO, was
calculated for both Long Island and Newark for every date with valid NMOC and NO, sampling
results. The NO, concentrations used in this ratio were calculated from hourly NO, levels (from
6:00 a.m. to 9:00 a.m.) that were reported to AIRS. For Long Island, the average NMOC:NO,
was 4.5 ppbC/ppb, with 75 percent of the daily NMOC:NO, levels less than 5 ppbC/ppb. For
Newark, the average ratio was 6.7 ppbC/ppb, with 50 percent of the daily NMOC:NO, levels less
than 5 ppbC/ppb. These ratios suggest that the airsheds in Long Island and, to a lesser extent, in

Newark are both “hydrocarbon limited,” implying that these airsheds have excess NO, and that

% Since NO, concentrations are typically expressed in units of ppb, NMOC:NO, ratios have units of
ppbC/ppb.
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the concentration of airborne hydrocarbons is the limiting parameter for the photochemical
reactions that form ozone. Despite these empirical predictions, NMOC:NO, levels at both Long
Island and Newark were generally uncorrelated with corresponding maximum ozone
concentrations (i.e., peak ozone concentrations were just as likely to occur on days when

- NMOC:NO, was relatively high as when the ratio was relatively low).

4.2.3 Temporal Variations

This section evaluates short-term variations in NMOC concentrations. Analyses of such
temporal variations can provide insight into seasonal changes in air quality and can verify data
trends identified in previous NMOC/SNMOC final reports. As Section 3.2.5 explained, this
report does not present long-term temporal variations, because the 1998 NMOC/SNMOC report

will focus almost exclusively on this topic.

Figure 4-5 illustrates how the average NMOC concentration measured during the
morning hours at both Long Island and Newark varied from one summer month to the next.
Although some variations are observed, none of the monthly average concentrations differed
from the corresponding arithmetic mean concentration by more than 15 percent. The absence of
notable monthly variations contradicts a finding of the 1996 NMOC report: the average NMOC
concentration of all samples collected in Long Island in September 1996 was more than twice as
high as the average concentration for samples collected in other summer months. The difference
in findings probably results from varying meteorological conditions from one year to the next—a
hypothesis that can be confirmed by analyzing monthly variations in future NMOC/SNMOC

programs.

4.3 Data Quality Parameters

Table 4-4 presents data quality parameters for the 1997 NMOC monitoring data. These
data indicate that both stations that collected NMOC samples had completeness fractions greater
than 94 percent, with an overall program completeness of 95 percent. These high fractions

suggest that efficient management and oversight of the 1997 NMOC monitoring stations helped
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minimize errors in field sampling and laboratory analysis and, therefore, the number of invalid
samples. Table 4-4 also shows that NMOC concentrations measured during replicate analyses or
from duplicate samples generally did not vary by more than 10 percent, a level indicating that all
NMOC samples were collected and analyzed to a high degree of precision. As Section 3
explained, the accuracy of the NMOC measurements cannot be quantified since no audit samples

were provided.

4.4 Summary

During the 1997 NMOC/SNMOC program, concentrations of NMOC during the morning
hours were consistently lower at the Long Island station (average concentration 0.264 ppmC)
than at the Newark station (average concentration 0.430 ppmC), and average NMOC
concentrations at both stations decreased from their 1996 levels. At both stations, levels of
NMOC tended to be higher on less humid days, during periods of no measurable precipitation,
and when wind speeds were relatively low. The reason for the correlation between NMOC
concentrations and humidity is not known, and correlations between NMOC concentrations and
precipitation and wind speed are consistent with widely accepted atmospheric dispersion
modeling algorithms. Low to moderate NMOC concentrations were detected at both Long Island
and Newark when winds blew from virtually every compass direction, suggesting that emissions
sources throughout the areas—most likely motor vehicles—account for a large fraction of the
NMOC that was detected. Although several different analyses were performed to evaluate
potential correlations between airborne NMOC, NO,, NO,, and ozone, these analyses did not
yield consistent results or suggest notable similarities between ambient air concentrations of any

pair of these pollutants.
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Figure 4-1 (Page 1 of 2)
. Comparison of NMOC Concentrations at LINY to Selected Meteorological Parameters
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Comparison of NMOC Concentrations at LINY to Selected Meteorological Parameters

Figure 4-1 (Page 2 of 2)

NMOC Concentration vs. Temperature
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Comparison of NMOC Concentrations at NWNJ to Selected Meteorological Parameters

Note:

Figure 4-3 (Page 1 of 2)

0.600

NMOC Concentration vs. Humidity

0.500 -

Average NMOC Concentration (ppmC)

0.400 4. . '
0.300 -
0.z00 |

0.100 {

0.000

<70 »>=70 and <80 »=80 and <90 =»=90

Relative Humidity (% )

0.500

NMOC Concentration vs. Precipitation

0.300

0.400 4 - - - - o L. ‘

Average NMOC Concenlration (ppmC)

0200 ]

0.100 ./

0.000

»>=0.1 inches

<0.1 inches

Precipitation

Refer to Section 4.2.1.2 for descriptions and interpretations of these graphs.
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Figure 4-3 (Page 2 of 2)
. Comparison of NMOC Concentrations at NWNJ to Selected Meteorological Parameters

NM OC Concentration vs. Temperature
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Figure 4-5
. Average Monthly NMOC Concentrations Measured from 6:00 a.m. to 9:00 a.m.

M onthly Variations at Long Island
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Table 4-1

Summary Statistics for Concentrations of Total NMOC

Monitoring Station

Category Parameter
LINY NWNJ
Number of valid sampling days 81 81
Prevalence Number of nondetects 0 0
Frequency of detection 100% 100%
Lowest concentration (ppmC) 0.054 0.086
25th percentile concentration (ppmC) 0.140 0.230
Concentration 50th percentile concentration (ppmC) 0.230 0.369
Range
75th percentile concentration (ppmC) 0.239 0.485
Highest concentration (ppmC) 0.898 2.139
Median concentration (ppmC) 0.230 0.369
Central . . .
Tendency Arithmetic mean concentration (ppmC) 0.264 0.430
Geometric mean concentration (ppmC) 0.219 0.360
Standard deviation (ppmC) 0.168 0.302
Variability .
Coefficient of variation 0.64 0.70
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Table 4-3

Dates with Highest Concentrations of Ozone, NMOC, NO,, and NO,

Dates of Ten Highest Concentrations Observed at Long Island, New York, by Pollutani:

Qzone NMOC NO, NO,
6/25/97 9/25/97 T/18/97 8/29/97
7/14/97 8/20/97 7/21/97 6/25/97
7/15/97 9/19/97 9/25/97 6/12/97
7/17/97 6/9/97 9/19/97 6/11/97
7/28/97 7/14/97 9/5/97 8/8/97
7/16/97 6/12/97 7/25/97 8/1/97
6/20/97 7/15/97 8/26/97 6/10/97
6/26/97 8/26/97 9/18/97 9/12/97
6/12/97 8/25/97 8/25/97 9/19/97
6/11/97 9/16/97 8/29/97 6/30/97

Dates of Ten Highest Concentrations Observed at Newark, New Jersey, by Pollutant:

Ozone NMOC NO, NO,
7/14/97 8/19/97 9/18/97 6/25/97
6/25/97 6/25/97 9/25/97 6/20/97
7/16/97 w1797 9/22/97 7/15/97
7/15/97 9/25/97 9/19/97 7/16/97
7/17/97 8/22/97 6/10/97 8/8/97
6/11/97 8/25/97 8/20/97 7/8/97
6/12/97 8/26/97 8/25/97 6/24/97
6/20/97 /8197 6/17/97 8/26/97
7/18/97 9/16/97 8/8/97 7117197
7/21/97 6/10/97 8/27/97 9/19/97

Note:  For each pollutant, the first date indicates the date of the highest concentration for that pollutant; the second
date indicates the date of the second highest concentration; and so on.
For NMOC, NO,, and NQ,, dates in boldface correspond to dates of the highest concentrations of ozone.
This table only considers concentrations of ozone, NO,, and NQ, that were measured on valid NMOC
sampling dates. Higher concentrations of ozone, NO,, and NO, may have occurred during the summer of

1997.
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5.0  Analysis of SNMOC Monitoring Results

This section summarizes the SNMOC ambient air monitoring data collected during the
1997 NMOC/SNMOC program. As discussed earlier, the SNMOC sampling and analytical
method currently measures ambient air concentrations of 80 different hydrocarbons as well as
total NMOC, thus providing extensive information on the composition and magnitude of selected
components of air pollution at the sampling locations. Of the five monitoring stations that
measured SNMOC, four (CAMS35, CAMS13, DLTX, and JUMX) collected SNMOC samples
daily, and one (NWNYJ) collected SNMOC samples on a weekly basis, but only from July 15 to
September 15. Due to this limited sample size, results from the Newark monitoring station are
not included in many of the statistical analyses that follow. The remainder of this section uses
the data analysis methodology to present data summary tables (Section 5.1), selected analyses

and interpretations (Section 5.2), and data quality parameters (Section 5.3).

5.1  Data Summary Tables
Using the data summary parameters defined in Section 3.1, Tables 5-1 through 5-5
efficiently summarize the large volume of SNMOC monitoring data for the five stations that

collected SNMOC samples. These summary tables reveal several notable trends:

. Prevalence. Nearly all of the 80 hydrocarbons identified by the SNMOC
sampling and analytical method were detected in more than 75 percent of the total
SNMOC samples collected during the 1997 program. Several compounds,
however, were detected in fewer than 50 percent of the SNMOC samples at most,
if not all, of the monitoring stations. These compounds with low prevalence
include 1-decene, 1-dodecene, 2-ethyl-1-butene, 1-octene, propyne, 1-tridecene,
and 1-undecene. Summary statistics for these compounds should be interpreted
with caution, as they may be significantly biased by a large number of nondetects.
On the other hand, summary statistics for the remaining compounds likely
characterize the concentration distributions well. The high prevalence for these
compounds confirms that air pollution at the five monitoring stations during the
summer months contains a complex mixture of numerous hydrocarbons.

. Concentration range. As Tables 5-1 through 5-5 indicate, concentration ranges

for SNMOC vary widely from one compound to the next, and from one
monitoring station to the next. For example, the highest concentrations of seven
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compounds exceeded 100 ppbC at the CAMS13 monitoring station; the highest
concentrations of every compound were lower than this level at CAMSS and
DLTX-—the two other NMOC/SNMOC monitoring stations in the Dallas—Fort
Worth metropolitan area. Of particular notice, six of the seven compounds with
concentrations exceeding 100 ppbC at CAMS13 were alkanes. Section 5.2.1
revisits this issue.

Readers should note two limitations when interpreting the concentration range
data in Tables 5-1 through 5-5. First, because the data summary tables only
characterize air concentrations measured between 6:00 a.m. and 9:00 a.m., local
time, 1t is highly likely that ambient levels of many SNMOC rose to higher levels
or fell to lower levels than the concentration range data indicate. Second, the
concentration range data for Newark probably do not even characterize the actual
lowest and highest concentrations between 6:00 a.m. and 9:00 a.m., since this
station collected SNMOC samples on only 9 days of the monitoring program.

Central tendency. Not surprisingly, the median, arithmetic mean, and geometric
mean concentrations shown in Table 5-1 through 5-5 also vary significantly
among the different compounds and monitoring stations. These various measures
of central tendency are expected to accurately represent actual central tendency
levels, due to the high prevalence of most SNMOC. For compounds detected in
fewer than half of the SNMOC samples, the magnitude of the central tendency
values may be influenced by nondetects, which were all replaced with
concentrations equal to one-half their corresponding detection limits. Severa]
trends were identified to put the large volume of SNMOC central tendency data
into perspective: :

ey Total NMOC. As discussed previously, the SNMOC analytical method
not only measures concentrations of individual compounds, but also
measures levels of total NMOC. To provide a sense of overall levels of air
pollution, Figure 5-1 shows how total NMOC varied among the sampling
locations that collected NMOC samples. The figure shows that
concentrations of total NMOC at CAMS13, JUMX, and NWNJ were quite
similar (i.e., roughly 400 to 450 ppbC) and approximately twice as high as
those at CAMSS5 and DLTX.

(2) Percent of compounds identified. For additional insight into the nature of
airborne organic compounds, Figure 5-1 also illustrates the total
concentration of compounds that the SNMOC analytical method can, and
cannot, identify. Although the percentage of identified and unidentified
compounds varied from one monitoring station to the next, concentrations
of the 80 compounds identified by the SNMOC analytical method
consistently comprised approximately 80 percent of the measured total
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NMOC concentration. In short, the SNMOC analytical method
consistently characterizes over three-fourths of the organic compounds
found in urban air pollution. Although the identities of the unidentified
compounds are obviously unknown, they probably include halogenated
hydrocarbons, carbonyls and other oxygenates, and hydrocarbons that the
SNMOC analytical equipment cannot yet identify. Accordingly, the
analyses and interpretations in Section 6 (VOC) and Section 7 (carbonyls)
provide insight into the “unidentified” forms of organic compounds found
at the NMOC/SNMOC monitoring stations.

Compounds with highest geometric mean concentrations. Table 5-6 lists,
in order of decreasing geometric mean concentration, the 12 compounds
with the highest geometric means for each monitoring station. To rank
compounds for the table, geometric mean concentrations were first
converted to units of ppbv. Unlike units of ppbC, which are weighted by
the numbers of carbons in compounds (see Section 2.4), units of ppbv are
not biased by compound-specific parameters. For every NMOC/SNMOC
monitoring station, the 12 compounds with the highest geometric mean
concentration accounted for over 60 percent of the total identified
SNMOC, on a ppbv basis. Therefore, a relatively small number of
compounds comprises a significant portion of the complex mixture of
airborne hydrocarbons.

According to Table 5-6, many compounds had relatively high geometric
mean concentrations at all five monitoring stations (acetylene, n-butane,
ethane, ethylene, isopentane, n-pentane, propane, and toluene), and other
compounds ranked among the highest at only a few stations (benzene,
n-hexane, isobutane, isobutene/1-butene, 2-methylpentane,
3-methylpentane, propylene, and m,p-xylene). Also of note, the six
compounds with the highest ranking geometric mean concentrations at
CAMS13 were all alkanes, yet the six compounds with the highest
concentrations at every other station included at least two olefins. Section
5.2.1, which examines the composition of air pollution at the
NMOC/SNMOC monitoring stations, explains the significance of this
trend.

Comparisons of geometric mean concentrations across sites. To provide
greater insight into the spatial variations of individual compounds, Figure
5-2 compares geometric mean concentrations across the five monitoring
stations for the 12 compounds with the highest central tendency levels.
The diagrams within this figure indicate that the highest geometric mean
concentrations for these compounds were observed only at the CAMS13,
JUMX, and NWNJ monitoring stations, with levels at CAMSS5 and DLTX
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usually the lowest. Further, according to these diagrams, concentrations of
all olefins (i.e., acetylene, ethylene, and propylene) and aromatic
compounds (i.e., toluene and m,p-xylene) were highest at NWNJ; while
concentrations of alkanes were highest at CAMS13, JUMX, and NWNJ.
Concentrations of three alkanes—isopentane, 2-methylpentane, and
n-pentane—at CAMS13 were at least twice as high as those at the other
four SNMOC monitoring stations. Section 5.2.1 revisits this issue.

. Variability. According to Tables 5-1 through 5-5, coefficients of variation for
most SNMOC compounds were lower than 1.5 at all monitoring stations. The
compounds with the highest coefficients of variation were typically those with the
most carbon atoms (e.g., isopropylbenzene, n-tridecane, n-decane, n-dodecane,
and n-undecane). This trend most likely results from the fact that coefficients of
variation were calculated from concentrations expressed in units of ppbC, which
inherently gives greater weight to concentrations of compounds with more carbon
atoms. As a result, compounds with more carbons will appear to have greater
variability than compounds with less carbons, even if the concentration
distributions are similar.

Although these data summary parameters provide a succinct, yet thorough, account of the
SNMOC monitoring data, they do not characterize sources of airborne hydrocarbons, impacts of
hydrocarbons on ozone formation, or comparisons of levels of air pollution to meteorological

conditions. The following sections address these issues.

5.2 Analyses and Interpretations

To provide greater insight into the trends and patterns among the SNMOC
concentrations, the following discussion examines the composition of the SNMOC air samples
(Section 5.2.1), presents selected statistical analyses of the SNMOC data (Section 5.2.2),
compares SNMOC concentrations to selected meteorological conditions (Section 5.2.3) and to
concentrations of ozone and NO, (Section 5.2.4), and evaluates short-term temporal variations in

the SNMOC data (Section 5.2.5).

5.2.1 Composition of Air Samples
As Section 3.2.1 explained, the composition of air samples can be used to characterize the

reactivity and sources of pollution within airsheds. For instance, air samples having relatively
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high concentrations of reactive compounds (such as olefins) likely characterize “newer” air
masses near emissions sources, and those with relatively low concentrations of reactive
compounds likely characterize “older” air masses (e.g., those influenced by long-range transport).
The following analyses explain how the composition of air samples varied among the stations

that collected SNMOC samples:

. Composition of air samples, by compound group. Figure 5-3 indicates the extent
to which alkanes, olefins, and aromatics constitute total identified SNMOC at
cach monitoring station. To avoid weighing the compositions by the number of
carbons in each compound group, the compositions were calculated from
concentrations in units of ppbv. The figure highlights several notable trends
among the SNMOC monitoring data. First, aromatic compounds typically
accounted for 1015 percent of the total identified SNMOC, while olefinic
compounds accounted for 20-30 percent, and alkanes accounted for 55-70
percent.' Second, since olefins and aromatic compounds are generally more
reactive in air than alkanes (Carter, 1994), the relative amounts of these
compound groups in air samples can be used as a rough indicator of the age of air
masses. For instance, of the three monitoring stations in the Dallas—Fort Worth
metropolitan area, olefins and aromatic compounds at DLTX consisted of roughly
40 percent of the identified SNMOC compounds, while these groups of
compounds consisted of roughly 35 and 30 percent of the identified SNMOC
compounds at CAMSS and CAMS 13, respectively. Otherwise stated, the air mass
at DLTX contains a higher fraction of more reactive species than the air mass at
CAMSS5 and CAMS13. This trend provides evidence that the air mass at DLTX is
relatively “new,” while the air masses at CAMSS and CAMS13 are relatively
“o0ld” and possibly influenced by long-range transport. The fact that the six
compounds with highest concentrations at CAMS13 were all alkanes supports this
hypothesis. :

The relative amounts of aromatics and olefins at JUMX and NWNJ are roughly
the same as that for DLTX. Although the similarity in composition might suggest
that the air masses at these monitoring stations are relatively “new,” it is possible
that the entire Juarez—El Paso and Newark-New York City airsheds contain
relatively higher amounts of these reactive compounds. For a better
understanding of the age of air masses at JUMX and NWNJ, data from this study

' Two alkynes, acetylenc and propyne, were identified by the SNMOC analytical method. These
compounds were considered in the clefin category for the calculations. Some compounds (e.g., styrene) include both
olefinic and aromatic functional groups. Such compounds were considered to be aromatics for the analyses of
chemical composition.
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must be compared with SNMOC monitoring data from other stations in those
airsheds.

Ratios of BTEX compounds. Both Section 3.2.1 and the 1996 NMOC/SNMOC
report describe how concentration ratios of individual BTEX compounds can be
used to identify emissions sources and comment on the age of air masses.
Applying such analyses to the SNMOC monitoring data, Figure 5-4 shows how
ratios of the concentrations of BTEX compounds to the concentration of
ethylbenzene are very similar in magnitude from one station to the next. Further,
the BTEX concentration ratios (shown in Figure 5-4) are very similar to those
reported in a recent roadside monitoring study designed to characterize the
composition of air pollution believed to be influenced primarily by motor vehicle
emissions (Conner, Lonnerman, Seila, 1995). The similarities between these
profiles strongly suggest that emissions from motor vehicles contribute
significantly to the ambient levels of aromatic hydrocarbons measured during the
program.

BTEX concentration ratios, particularly ratios of benzene to toluene, are
frequently used to characterize the age of air masses at monitoring locations. The
benzene:toluene ratio gradually changes as air masses move, primarily because
toluene is nearly twice as reactive in photochemical smog as benzene (USEPA,
1996a). As a result, the benzene:toluene ratio is expected to increase as an air
mass travels from emissions sources to downwind locations. SNMOC monitoring
data collected in the Dallas—Fort Worth metropolitan area indicate that
benzene:toluene ratios range from 0.36 and 0.37 at CAMSS5 and DLTX,
respectively, to 0.43 at CAMS13. The notably higher benzene:toluene ratio at
CAMS13 supports the hypothesis, raised previously, that the air mass at this
‘monitoring station appears to be affected by long-range transport.

5.2.2 Statistical Analyses

This section examines correlations between ambient air concentrations of different
pollutants to provide additional insight into the origin of compounds detected in the SNMOC air
samples. As Section 3 explained, the ambient air concentrations of pairs of compounds with
highly correlated air monitoring data tend to rise and fall in proportion; this most likely suggests
that both compounds originate from similar emission sources. As an example of applying this
principle to the SNMOC monitoring data, a matrix of Pearson correlation coefficients was
calculated among the 15 compounds with highest geometric mean concentrations at the CAMS13

monitoring station.
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This matrix of éorrelation coefficients showed that all possible pairings of the following
subset of compounds had very strong correlations (i.e., Pearson correlation coefficients greater
than 0.93): benzene, n-hexane, isopentane, 2-methylhexane, 2-methylpentane, 3-methylpentane,
n-pentane, toluene, and m,p-xylene. With few exceptions, data correlations among the other
compounds selected for this analysis (acetylene, n-butane, ethane, ethylene, isobutane, and
propane) exhibited notably weaker correlations with all other compounds. Similar patterns

among Pearson correlation coefficients were observed for the other SNMOC monitoring stations.

The notably strong correlations among selected aromatic and 6- and 7-carbon aliphatic
compounds indicate that this entire group of compounds probably originates from the same
categories of emissions sources in the vicinity of the SNMOC monitoring stations. The highly
correlated data, coupled with the similarity of the BTEX concentration profiles to roadside
studies, provide compelling evidence that motor vehicle emissions account for much of the
airborne aromatic compounds and 6- and 7-carbon aliphatic compounds. The weaker
correlations for acetylene, n-butane, ethane, ethylene, isobutane, and propane do not necessarily
imply that motor vehicle emissions are not the primary source of the compounds; rather, the
weaker correlations probably suggest that other factors, most likely photochemical reactions,
affect ambient air concentrations of these compounds more significantly than they affect

concentrations of aromatic and higher molecular weight aliphatic compounds.

5.2.3 Comparison to Selected Meteorological Conditions

The following analyses compare local observations of humidity, precipitation,
temperature, wind direction, and wind speed to the concentrations of total NMOC measured by
the SNMOC analytical method. More specifically, Section 5.2.3.1 compares meteorological data
from the Dallas—Fort Worth Regional Airport to the CAMS13, CAMSS, and DLTX ambient air
monitoring data, and Section 5.2.3.2 compares meteorological data from the El Paso
International Airport to the JUMX ambient air monitoring data. Section 4.2.1.2 provided similar
comparisons for the NWNJ monitoring station. Alfhough comparisons to concentrations of

mdividual SNMOC may provide insight into specific air quality trends, such extensive analyses
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are beyond the scope of this report. The entire database of ambient air monitoring data and
meteorological observations can be made available to sponsoring agencies that might be

interested in investigating this issue further.

5.2.3.1 Comparisons for the Dallas—Fort Worth Area

Following the data analysis approach used in Section 4.2.1, this section uses two
graphical techniques to compare meteorological conditions to total NMOC concentrations:
Figure 5-5 shows how NMOC concentrations changed, on average, with different meteorological
conditions; and Figure 5-6 presents a scatter plot illustrating the wind direction and total NMOC

concentration for every valid sampling date. A description of these figures follows:

. Humidity. According to Figure 5-5, NMOC concentrations at the three
monitoring stations in the Dallas—Fort Worth area tended to be lowest when the
relative humidity during the morning hours was the highest. This trend was
particularly pronounced for the CAMS13 monitoring station, where NMOC
concentrations on mornings with relative humidity less than 60 percent were, on
average, over 5 times greater than NMOC concentrations on morning with relative
humidity greater than or equal to 80 percent. As Section 4.2.1.1 noted, the exact
reason (or reasons) for this data trend is not known.

. Precipitation. As Figure 5-5 illustrates, NMOC concentrations at CAMSS5,
CAMSI13, and DLTX on mornings with at least 0.1 inches of rain were roughly
two to three times lower than NMOC concentrations on mornings with no
measurable precipitation—a data trend that is consistent with theories of wet
deposition (i.e., the scavenging of airborne hydrocarbons by precipitation)
(USEPA, 1995). The meteorological station at the Dallas—Fort Worth Regional
Airport recorded measurable precipitation between 6:00 a.m. and 9:00 a.m. on
only two mornings of the 1997 NMOC/SNMOC program. As a result, analyses of
larger volumes of data are needed to confirm whether the trend illustrated in
Figure 5-5 1s statistically significant.

. Temperature. Unlike humidity and precipitation, temperature does not seem
closely related to NMOC concentrations. No trends are apparent from comparing
temperature data with NMOC monitoring data collected at the three monitoring
stations in the Dallas—Fort Worth metropolitan area. The 1996 NMOC/SNMOC
fial report also noted the absence of strong correlations between temperature and
NMOC concentrations at these monitoring stations.
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. Wind Speed. Consistent with observations reported for the Long Island and
Newark monitoring stations, Figure 5-5 indicates that, on average, NMOC
concentrations at CAMSS5, CAMS13, and DLTX all were lowest when wind
speeds were greatest. This effect was most pronounced at the DLTX monitoring
station, where the average NMOC concentration during moming hours with high
winds (i.e., wind speeds greater than 12 mph) was nearly three times lower than
the average NMOC concentration during periods of relatively calm winds (i.e.,
wind speeds less than or equal to 4 mph). The trend of decreasing NMOC
concentrations as wind speeds increase is consistent with local emissions sources
affecting these monitoring stations: during periods of calm winds, emissions from
local sources do not disperse as effectively, causing ambient air concentrations to
be relatively higher than during periods of high wind speeds. This consistency
with local emissions sources does not necessarily imply that longer-range
transport of hydrocarbons within the Dallas—Fort Worth airshed is insignificant.

. Wind Direction. Figure 5-6 illustrates how NMOC concentrations varied with the
wind direction observed at the Dallas-Fort Worth Regional Airport. The figure
indicates that winds predominantly blew from the south to the southwest (i.e.,
wind directions between 180° and 230°), and it does not suggest any notable
correlations between wind directions and levels of hydrocarbon air pollution. For
instance, with the exception of a few outliers, NMOC concentrations ranging from
100 ppbC to 300 ppbC were detected at the CAMSS5 monitoring station when
winds blew from virtually every compass direction. The lack of correlations
between NMOC concentrations and wind direction suggests that emissions
sources of hydrocarbons exist throughout the Dallas—Fort Worth metropolitan
area, as opposed to hydrocarbon emissions sources being concentrated in any one
particular area. This observation supports the hypothesis that emissions from
motor vehicles probably account for a significant amount of the hydrocarbons
detected in the air at CAMSS5, CAMS13, and DLTX.

Although the above analyses indicate some notable trends between meteorological
conditions and levels of air pollution in Dallas and Fort Worth, these analyses should certainly
~ not be viewed as comprehensive, particularly because many other factors (e.g., solar radiation,
mixing heights, upper-air wind patterns) are known to affect levels of air pollution. Nonetheless,
the above analyses offer some insight into how individual meteorological parameters affect, or do
not affect, ambient air concentrations of hydrocarbons in the Dallas—Fort Worth metropolitan

area.



5.2.3.2 Comparisons for Juarez, Mexico

Following the same approach as used in Section 5.2.3.1, the following analyses and
Figures 5-7 and 5-8 examine how meteorological conditions at the El Paso International Airport
relate to NMOC concentrations measured at the JUMX monitoring station. These figures
indicate several notable trends, most of which are similar to those obserw_ad at the other

NMOC/SNMOC monitoring stations:

. Humidity. Like the NMOC concentrations measured in Dallas, Fort Wofth, Long
Island, and Newark, those measured in Juarez, Mexico, also tended to be lowest
on mornings with highest relative humidity. Further research is needed to
determine what mechanisms cause ambient levels of hydrocarbons to decrease
under these meteorological conditions.

. Precipitation. As Figure 5-7 indicates, ambient air concentrations of NMOC in
Juarez tended to be lower on mornings that had measurable precipitation—a trend,
once again, that 1s most likely explained by the effects of wet deposition.

. Temperature. According to Figure 5-7, NMOC concentrations measured at
JUMX on relatively warm mornings were, on average, higher than those measured
on cooler mornings. In fact, of the six NMOC/SNMOC monitoring stations, the
temperature dependence of ambient air concentrations of total NMOC appeared to
be greatest at JUMX: when the temperature from 6:00 a.m. to 9:00 a.m. was
greater than or equal to 75 degrees Fahrenheit, NMOC concentrations at JUMX
tended to be roughly twice as high as those measured when temperatures were
below 75 degrees. The 1996 NMOC/SNMOC report found a similar trend,
suggesting that the positive correlation between temperature and NMOC
concentrations at JUMX is most likely not a statistical anomaly. The reason for
this positive correlation, however, is not known.

. Wind Speed. Consistent with findings for the other NMOC/SNMOC monitoring
locations, Figure 5-7 illustrates that, to a certain extent, ambient air concentrations
of total NMOC at JUMX decreased with increased wind speeds. As stated
previously, the enhanced atmospheric dispersion that occurs on windier days
probably explains this trend.

. Wind Direction. Figure 5-8 indicates that wind directions in the morning hours at
the El Paso International Airport almost always blew from wind directions
between 0° and 180°. For these wind directions, most NMOC concentrations
ranged from 0 ppbC to 500 ppbC, with some concentrations reaching higher
levels. However, there does not appear to be any obvious clustering of elevated
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concentrations about a particular wind direction. Therefore, the predominant
emmissions sources of airborne hydrocarbons at JUMX are most likely located all
around the monitoring station—an assumption consistent with the hypothesis that
motor vehicles account for a significant fraction of the total NMOC measured at
Juarez, Mexico.

5.2.4 Comparison to Concentrations of Ozone and NO,

Despite the complexity of ozone formation processes, simple statistical and numertcal
analyses of ambient air monitoring data for NMOC, ozone, and NO, can provide some insight
into the mixture of air pollutants typically found in ozone nonattainment areas. The following
discussion presents selected data correlations (Section 5.2.4.1), compares dates on which
pollutants reached their highest concentrations (Section 5.2.4.2), and evaluates ratios between
concentrations of NMOC and NO, (Section 5.2.4.3). Although these analyses certainly do not
completely characterize ozone formation processes, they highlight some trends that may be worth
further investigation. For a more comprehensive understanding of ozone formation and transport
in their jurisdictions, sponsoring agencies should supplement the following analyses with other
analyses, such as compiling extensive emissions inventories and running regional dispersion

models.

5.2.4.1 Data Correlations

To indicate quantitatively the strength of correlations between ambient air concentrations
of ozone and concentrations of NMOC, NO,, and NO,, Table 5-7 presents selected Pearson
correlation coefficients for the four monitoring stations that collected daily SNMOC samples.
These coefficients characterize the extent to which maximum 1-hour average concentrations of
ozone at the SNMOC monitoring stations varied with (1) 3-hour average concentrations of
NMOC, (2) maximum 1-hour average concentrations of NO,, and (3) maximum 1-hour average

concentrations of NO,. The data in Table 5-7 indicate several trends:

. Magnitude of Pearson correlation coefficients. All of the Pearson correlation
coefficients in Table 5-7 are less than 0.6. The absence of stronger correlations
(i.e., Pearson correlation coefficients closer to -1 or 1) suggests that ambient air
concentrations of NMOC, NO,, or NO, alone do not explain variations in ozone
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levels at the SNMOC monitoring stations. Some combination of these and other
parameters likely correlates better with maximum ozone concentrations.

. Trends at CAMS5 and DLTX. According to Table 5-7, the Pearson correlation
coefficients between ozone and NMOC, NO,, and NO, were of comparable
magnitude at each of the SNMOC monitoring stations in Dallas. This observation
suggests that maximum ozone concentrations were just as likely to occur on days
with relatively high levels of NMOC concentrations as they were to occur when
NO, and NO, concentrations were relatively high. In short, the coefficients do not
link levels of ozone at CAMSS5 and DLTX to any particular pollutant.

. Trends at CAMSI13 and JUMX. Unlike the similarities noted for CAMSS5 and
DLTX, the Pearson correlation coefficients calculated for CAMS13 and JUMX
exhibit a different trend: at both stations, correlations between ozone and NMOC
were notably lower than correlations between ozone and NO, and between ozone
and NO,. This trend suggests that ambient air concentrations of ozone at
CAMS13 and JUMX appear to be more closely linked to concentrations of NO,
and NOQ, than to concentrations of NMOC. Section 5.2.4.3 revisits this issue.

Although the analyses of Pearson correlation coefficients provide some insight into air
quality at the SNMOC monitoring station, there are several limitations associated with using
these coefficients to evaluate ozone formation trends, including: (1) Because Pearson correlation
coefficients only characterize the extent to which pairs of variables exhibit linear relationships,
analyses of Pearson correlation coefficients may overlook noteworthy nonlinear and multivariate
trends; (2) The correlation analysis above considered only 3-hour average concéntrations of
NMOC and maximum daily 1-hour average concentrations of ozone, NO,, and NO, from the
same day. It 1s possible that stronger correlations exist among concentrations with different
averaging times and that elevated concentrations of ozone may be linked to events that occur
over several consecutive days. Despite these limitations, analyses of Pearson correlation
coefficients provide a simple account of whether ozone concentrations generally rose and fell in

proportion with concentrations of other pollutants.



5.2.4.2 Comparison of Highest Concentrations

As Section 4.2.2.2 explained, EPA’s air quality standards for ozone changed during the
1997 NMOC/SNMOC program from a maximum hourly standard of 0.120 ppm to an 8-hour
average standard of 0.080 ppm. When evaluating the highest concentrations of ozone, this
section considers only maximum hourly concentrations—the averaging period that EPA
regulated at the beginning of the 1997 NMOC/SNMOC program. Future NMOC/SNMOC
reports will assess how peak concentrations of NMOC relate to 8-hour average concentrations of

ozone.

To assess the extent to which peak concentrations of ozone, NMOC, NO,, and NO, are
related, Table 5-8 lists, for the four monitoring stations that collected SNMOC samples daily, the
10 dates on which maximum hourly ozone concentrations were highest, the 10 dates on which
3-hour average NMOC concentrations were highest, the 10 dates on which maximum hourly NO,
concentrations were highest, and the 10 dates on which maximum hourly NO, concentrations
were highest. In generating this table, dates with invalid or incomplete ozone, NMOC, NO,, or

NO, measurements were not considered.

_ Although peak ozone concentrations at the four monitoring stations sometimes occurred
on dates when NMOC, NO,, or NO, concentrations also peaked, Table 5-8 indicates that, more
often than not, the dates of the highest ozone concentrations of the four pollutants did not
coincide. As with the analyses of Pearson correlation coefficients, this simplified analysis of
peak ozone concentrations cannot identify patterns among the data that are reasonably predictive

of elevated ozone concentrations.

5.2.4.3 Ratios of NMOC to NO,

As Section 4.2.2.3 explained, the ratio of NMOC concentration to NO, concentration (or
NMOC:NOQ,) at a given monitoring station may characterize the predominant ozone. formation
processes for a given air mass. To a first approximation, airsheds with NMOC:NQ, levels less

than 5 ppbC/ppb are “hydrocarbon limited,” and airsheds with NMOC:NO, levels greater than
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15 ppbC/ppb are “NO, limited” (USEPA, 1996a). Reports have suggested that variations in
concentrations of NO, are suspected of having little influence on ozone concentrations in
“hydrocarbon limited” areas, and, similarly, variations in concentrations of NMOC are suspected
of having little influence on ozone concentrations in “NO, limited” areas (USEPA, 1996a). As
stated previously, because the generic NMOC:NQ, categories provide a simplified account of an
extremely complex physical phenomenon, EPA does not recommend that firm conclusions be

drawn solely from evaluating NMOC:NO, levels (USEPA, 1995b).

Based on the NMOC concentrations reported by the SNMOC analytical method and the
NO, concentrations reported by the monitoring stations listed in Table 3-1, NMOC:NO, levels
for the 1997 NMOC/SNMOC monitoring stations are 5.5 ppbC/ppb for CAMSS3, 43.8 ppbC/ppb
for CAMS13, 5.3 ppbC/ppb for DLTX, and 16.4 ppbC/ppb for JUMX. Applying the guidelines
stated previously, the NMOC:NO, values for CAMSS5 and DLTX are slightly higher than the
threshold listed for “hydrocarbon limited” air masses, while the values for JUMX and especially
CAMS13 meet the empirical criteria for “NO, limited” air masses. It should be noted that, for
the CAMS 13 and JUMX stations, the statistical analyses in Section 5.2.4.1 corroborate the
predictions of the NMOC:NO, ratios: The statistical analyses showed that ozone levels at
CAMS13 and JUMX correlated better with concentrations of NO, than with NMOC, as is
expected for “NO, limited” air masses. DesPite the consistent findings from different statistical
and numerical analyses, sponsoring agencies should supplement the predictions of the
NMOC:NO, ratios with other photochemical assessment techniques, such as conducting

modeling simulations.

5.2.5 Temporal Variations

The following discussion evaluates monthly vanations in the composition and magnitude
of SNMOC concentrations measured at the four stations that collected daily samples. Monthly
variations provide additional context for interpreting ambient air monitoring data, especially
because photochemical reactivity generally decreases in August and September, when the

number of daylight hours gradually decreases. As noted previously, the 1998 NMOC/SNMOC
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report will focus almost exclusively on presenting and interpreting annual variations in SNMOC

monitoring data.

Figure 5-9 presents four graphs that illustrate, for each monitoring station, how the
composition and magnitude of total identified SNMOC compounds varied from one summer
month to the next. The graphs indicate the total concentration of identified compounds in units
of ppbv, as well as relative contributions of alkanes, olefins, and aromatic compounds. In this
analysis, converting concentrations to units of ppbv was necessary to avoid biasing the
composition data in favor of compounds with more carbon atoms. The graphs in Figure 5-9

indicate several notable trends:

. CAMSS5. According to Figure 5-9, the concentrations of total identified SNMOC
gradually decreased through the summer, with the monthly average concentration
in September approximately 20 percent lower than in June. The composition of
the air samples did not indicate as a dramatic a change. However, the relative
amounts of olefins and aromatic compounds did increase, particularly in August
and September, and the relative amounts of alkanes decreased. The increase in
the most reactive compounds (i.e., olefins and aromatics) most likely results from
decreases in photochemical reactivity in the late summer.

’ CAMSI13. Figure 5-9 clearly indicates that the monthly average concentrations of
total identified SNMOC at CAMSS increased dramatically during the 1997
program. In fact, the monthly average concentration in August was roughly 2.5
times higher than the June and July monthly average concentrations, and the
monthly average concentration in September was almost 4 times higher than
levels in June and July. Unless motor vehicle traffic patterns in the Fort Worth
area exhibit similar monthly variations, the significantly higher SNMOC
concentrations in August and September cannot be explained entirely by local
motor vehicle sources. A likely alternate explanation is that air quality at
CAMS 13 may also be affected by long-range transport of hydrocarbons.

Of particular notice, none of the dates with the ten highest ozone concentrations at
CAMS13 were in September (see Table 5-8). Therefore, air concentrations of
ozone at CAMS13 did not appear to be affected significantly by the notable
increase in ambient air concentrations of hydrocarbons. This trend also supports
the hypothesis that the air mass at CAMS13 is “NQO, limited.”
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Not apparent in the figure is the fact that the composition of SNMOC samples at
CAMSI13 also changed significantly throughout the summer months. For
instance, olefins accounted for 25 percent of total identified SNMOC in June, but
accounted for only 11 percent of the total in September. This decrease was almost
entirely compensated by relative increases in the composition of alkanes. Thus,
contrary to the trend observed at CAMSS, the relative concentrations of the most
reactive compounds actually decreased during the months when photochemical
reactivity gradually diminishes. This trend is consistent with the hypothesis that
long-range transport of hydrocarbons may affect air quality at CAMS13, since one
would expect to see relatively lower amounts of reactive compounds if an air mass
had transported over longer distances. Further research is needed, however, to
confirm this explanation.

DLTX. The pattern of monthly variations in SNMOC concentrations at DLTX is
quite similar to that of CAMSS: the magnitude of monthly average concentrations
of total identified compounds gradually decreased, with the monthly average
concentration in September roughly 20 percent lower than that in June. Further,
the composition of olefins in the air mass gradually increased, while the relative
amounts of alkanes decreased. As with at CAMSS3, the steadily increasing
composition of the most reactive compounds might have resulted from decreases
in photochemical reactivity.

JUMX. Unlike the monthly average concentrations for the other monitoring
stations, those for JTUMX were nearly uniform, with average concentrations of
total identified compounds changing less than 10 percent from one month to the
next. The composition of pollution at Juarez, however, varied significantly. Most
notably, the relative composition of olefins increased from 21 percent in July to
28 percent in September, with a much less pronounced increase in the
composition of aromatic compounds, while a decrease in concentrations of
alkanes offset these increases. The changes in composition at JUMX are similar
to those observed at both CAMSS5 and DLTX: relative concentrations of the most
reactive species in ambient air gradually increase from July to August to
September.

Although the above discussion offers.several hypotheses to explain the temporal
variations observed during the 1997 NMOC/SNMOC program, the monthly variations described
in this report may not necessarily be representative of monthly variations in other years.
Analyses of temporal variations in the 1998 NMOC/SNMOC report will examine how monthly

variations have changed from one year to the next.
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5.3  Data Quality Parameters

Tables 5-9 and 5-10 characterize the quality of the SNMOC monitoring data by
presenting completeness and precision results, respectively, for the 1997 program. According to
Table 5-9, the air monitoring network and laboratory generated valid sampling results for
94 percent of the days with scheduled sampling events. Moreover, eVery station that collected
daily SNMOC samples achieved completeness figures of 89 percent or higher. These high
completeness figures suggest that the 1997 program was effectively managed both in the field

and in the laboratory to minimize the number of invalidated sampling events.

To provide another indicator of data quality, 37 duplicate SNMOC samples were
collected in the field, then analyzed in replicate. Table 5-10 presents a summary of analytical
precision and sampling and analytical precision for the 1997 program. As Section 3.3.2
describes, analytical precision characterizes measurement variability among replicate analyses,
and sampling and analytical precision characterizes measurement variability among duplicate
samples. According to the SNMOC method documentation, typical bounds for analytical
precision for compounds with concentrations greater than 2 ppbC should have a relative percent
difference (RPD) less than 30 percent and compounds measured at lower levels should have an
RPD less than 95 percent (USEPA, 1989). Typical bounds for sampling and analytical precision
are not reported. Of the 80 compounds listed in Table 5-10, none have an RPD greater than
95 percent, and only 9 have RPDs greater than 30 percent. Of these 9 compounds, only ethane
was consistently detected at levels greater than 2 ppbC. Therefore, with the possible exception of
measurements of ethane, analysis of SNMOC samples was performed within the precision

guidelines of the analytical method.

54 Summary

The 1997 SNMOC ambient air monitoring data, which were found to be highly precise,
extensively characterize levels of air pollution at specific locations in the Dallas—Fort Worth,
Juarez-El Paso, and Newark—-New York City airsheds. During the summer of 1997, geometric

means of NMOC concentrations during the moming hours varied significantly among the
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monitoring locations: levels at CAMS13, JUMX, and NWNIJ ranged from 400 to 450 ppbC,
while levels at CAMS3 and DLTX ranged from 150 to 250 ppbC. With the exception of
CAMS13, NMOC concentrations at the NMOC/SNMOC monitoring stations did not vary
significantly from one month to the next. At CAMS13, however, NMOC concentrations in
September were nearly 4 times greater than they were in June and July. Although the
composition of hydrocarbons also varied among the monitoring loéations and with time, aromatic
compounds typically accounted for 1015 percent of the total identified compounds on a volume
basis, olefins for 20-30 percent, and alkanes for 55-70 percent. At every monitoring station, the
12 compounds with the highest geometric mean concentrations accounted for over 60 percent of
the concentration of the total identified compounds. Several compounds had relatively high
geometric mean concentrations at all five monitoring stations. These compounds include
acetylene, n-butane, ethane, ethylene, isopentane, n-pentane, propane, and toluene, and, to a
lesser extent, benzene, n-hexane, isobutane, isobutene, 1-butene, 2-methylpentane,
3-methylpentane, propylene, and the xylene isomers. Consistent with findings from previous
NMOC/SNMOC reports, the concentration profiles for BTEX compounds suggest that motor
vehicle emissions account for a large fraction of the hydrocarbons in the air near the SNMOC

monitoring stations.

Despite the complex interactions between local meteorology and ambient air quality,
several correlations between selected meteorological conditions and SNMOC concentrations
were observed among the 1997 data. First, ambient air concentrations of total NMOC were
consistently lower on the most humid days, during periods of measurable precipitation, and on
the windiest days. Although the exact reason (or reasons) why airborne hydrocarbons are lowest
on humid days is unknown, the link between NMOC concentrations and precipitation is best
explained by the theory of wet deposition, and the link between NMOC concentrations and wind
speed is most likely due to the enhanced dispersion that occurs as wind speeds increase. No
consistent relationships were apparent between NMOC concentrations and temperature or wind

direction.
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Several statistical and numerical analyses were performed to identify relationships
between concentrations of ozone, NMOC, NO,, and NO,, but none found consistent data trends
across all monitoring stations. Nonetheless, there was some evidence that the air mass measured
at the CAMS 13 monitoring station in Fort Worth differed significantly from that measured at the
CAMSS and DLTX monitoring stations in Dallas. For instance, based on the relatively higher
ratios of benzene concentrations to toluene concentrations and the relatively lower composition
of olefins (i.e., the most reactive compounds), the air mass at CAMS13 appears to be “older”
than that at both CAMS5 and DLTX. Further, the air at CAMS13 exhibited unique monthly
variations and notably different NMOC:NO, levels. Possible interpretations of these data

patterns were provided throughout this section.

Finally; as noted throughout this report, even though the 1997 SNMOC monitoring data
extensively characterize air quality, they do not provide a comprehensive account of the many
different factors that affect levels of air pollution. Accordingly, sponsoring agencies are
encouraged to conduct additional analyses to gain further insight into the nature and magnitude

of air pollution within their jurisdictions.
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Note:

Figure 5-2 (Page 1 of 4)

Geometric Mean Concentrations of the Most Prevalent SNMOC
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Figure 5-2 (Page 2 of 4)
Geometric Mean Concentrations of the Most Prevalent SNMOC
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Figure 5-2 (Page 3 of 4)
. Geometric Mean Concentrations of the Most Prevalent SNMQC
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Figure 5-2 (Page 4 of 4)
Geometric Mean Concentrations of the Most Prevalent SNMOC
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Figure 5-5 (Page 1 of 4)
. Comparison of NMOC Concentrations at CAMS5, CAMS13, and
DLTX to Selected Meteorological Parameters
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Note:

Figure 5-5 (Page 2 of 4)
Comparison of NMOC Concentrations at CAMSS, CAMSI13, and
DLTX to Selected Meteorological Parameters
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Note:

Figure 5-5 (Page 3 of 4)

Comparison of NMOC Concentrations at CAMS5, CAMS13, and
DLTX to Selected Meteorological Parameters

CAMS5: NMOC Concentration vs. Temperature
.. 250
0 %
c &
= =
< 2
® &
= &
- =
g 3
- =
3
<75 »=75 and <80 »>=80 and <85 »=85
Temperature Range (degrees Fahrenheit)
CAMS13: NMOC Concentration vs. Temperature
1,000 .
:
o 2 "
e =
=
7z £
= H
g 3
< &
S
<75 »=75 and <80 »=80 and <85 ==85
Temperature Range (degrees Fahrenheit)
DLTX: NMOC Concentration vs. Temperature
L1
L=
U B 250 -
o R
= E 200 |
Zz
@ ®m 150 4
B0
®
= = o100 4
- S
< 5 50"
=
0
<75 »=75 and <80 »=80 and <85 »>=85
Temperature Range (degrees Fahrenheit)

Every plot has a different scale for average NMOC concentrations.
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Figure 5-5 (Page 4 of 4)
Comparison of NMOC Concentrations at CAMS5, CAMS13, and
DLTX to Selected Meteorological Parameters

CAMS5: NMOC Concentration vs. Wind Speed
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Note:  Every plot has a different scale for average NMOC concentrations.
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Figure 5-6 _
Comparison of NMOC Concentrations at CAMSS5,
CAMSI13, and DLTX to Wind Direction

CAMS5: NMOC Concentration vs. Wind Direction
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Note:  Every plot has a different scale. Wind direction in this plot is the direction from which wind blows.
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Comparison of NMOC Concentrations at JUMX to Selected Meteorological Parameters

Figure 5-7 (Page 1 of 2)
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Figure 5-7 (Page 2 of 2)
. Comparison of NMOC Concentrations at JUMX to Selected Meteorological Parameters
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Table 5-8 (Page 1 of 2)
Dates with Highest Concentrations of Ozone, NMOC, NO,, and NO,

Dates of 10 Highest Concentrations Observed at CAMSS3, by Pollutant:

Ozone NMOC NO_ NO,
7/14/97 6/25/97 9/26/97 9/29/97
717197 8/5/97 8125197 9/26/97
6/18/97 9/26/97 6/25/97 6/17/97
7/16/97 9/3/97 7/23/97 8/5197
8/27/97 7/16/97 6/11/97 6/3/97
8/26/97 6/18/97 9/29/97 8/4/97

8/6/97 7/28/97 8/21/97 6/11/97
7/15/97 6/9/97 6/17/97 6/18/97
7/28/97 7/15/97 6/18/97 7/15/97

8/4/97 6/11/97 7/15/97 6/4/97

Dates of 10 Highest Concentrations Observed at CAMSI3, by Pollutant:

Ozone NMOC NO, NO,
7/31/97 8/25/97 9/29/97 8/4/97
8/21/97 9/5/97 9/8/97 9/26/97
7/29197 911/97 8/28/97 6/6/97

8/1/97 9/3/97 7/18/97 9/11/97

8/4/97 9/22/97 6/3/97 8/7/97

6/9/97 8/26/97 6/4/97 9/30/97
7/17/97 9/23/97 7/30/97 8/5/97

8/5/97 8/29/97 9/30/97 7/23/97
8/27/97 8/28/97 7/23/97 8/8/97

6/4/97 9/1/97 8/4/97 9/8/97

Note:  For each pollutant, the first date in the list indicates the date of the highest concentration for that pollutant;
the second date indicates the date of the second highest concentration; and so on.
For NMOC, NO,, and NO,, dates in boldface indicate when dates correspond to a date with one of the ten
highest concentrations of ozone.
This table only considers concentrations of ozone, NO,, and NO, that were measured on valid NMOC
sampling dates. Higher concentrations of ozone, NO,, and NO, may have occurred during the summer of
1997 (e.g., on weekends, holidays, or other days when SNMOC samples were not collected).
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Table 5-8 (Page 2 of 2)
Dates with Highest Concentrations of Ozone, NMOC, NO,, and NO,

Dates of 10 Highest Concentrations Observed at DLTX, by Pollutant:
Ozone NMOC NO, NO,
7729197 6/11/97 9/26/97 9/29/97
8/4/97 6/2/97 612197 9/26/97
8/121/97 8/21/97 8/25/97 8/4/97
827197 6/9/97 6/11/97 9/8/97
8/1/97 9/3/97 6/25/97 6/17/97
7117197 8/28/97 9/3/97 8/27/97
8/6/97 8/29/97 8/5197 9/30/97
9/29/97 8/5/97 8/29/97 6/2/97
8/26/97 6/25/97 711597 6/11/97
9/3/97 7/15/97 8/4/97 8/5/97
Dates of 10 Highest Concentrations Observed at JUMX, by Pollutant:
Ozone NMOC NO, NO,
. 9/30/97 9/8/97 8/28/97 8/28/97
9/26/97 8/26/97 8/27/97 8/27/97
8/27/97 8/14/97 9/26/97 9/18/97
7128197 9/2/97 9/18/97 8/19/97
9/12/97 8/27/97 8/19/97 9/30/97
9129197 9/30/97 9/30/97 9/19/97
7/31/97 8/21/97 9/19/97 9/26/97
8/12/97 9/18/97 7/17/97 7/17/97
7117197 8/28/97 8/21/97 8/21/97
9/11/97 7/31/97 9/29/97 9/9/97

Note:  For each pollutant, the first date in the list indicates the date of the highest concentration for that pollutant;
the second date indicates the date of the second highest concentration; and so on.
For NMOC, NO,, and NO,, dates in boldface indicate when dates correspond to a date with one of the ten
highest concentrations of ozone.
This table only considers concentrations of ozone, NO,, and NO, that were measured on valid NMOC
sampling dates. Higher concentrations of ozone, NOQ,, and NO, may have occurred during the summer of
1997 (e.g., on weekends, holidays, or other days when SNMOC samples were not collected).
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Table 5-9

Completeness of SNMOC Monitoring

Monitoring Station Number of Days Number of Days
When Sampling with Valid Completeness
Code Location Was Attempted Samples
CAMS13 | Fort Worth, TX 84 79 94 %
CAMSS | Dallas, TX 84 81 96 %
DLTX | Dallas, TX 85 82 96 %
JUMX | Juarez, Mexico 56 50 39 %
Totals 309 292 94 %
Note:  The Newark monitoring station collected fewer than 10 SNMOC samples according to a site-specific

schedule. Sampling results for this station are not included in this review of completeness.
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Table 5-10
. Data Quality Parameters for SNMOC Measurements

Analytical Precision Sampling and Analytical Precision
Compound RPD Number of RPD Number of
(%) Observations (%) Observations
Acetylene 2% 74 3% 37
Benzene 5% 74 6% 37
1,3-Butadiene 18% 70 21% 35
n-Butane 3% 74 4% 37
cis-2-Butene 11% 74 12% 37
trans-2-Butene 17% 74 11% 37
Cyclohexane 8% 74 7% 37
Cyclopentane 11% 74 9% 37
Cyclopentene 10% 72 15% 36
n-Decane . 15% 74 23% 37
1-Decene 64% g 47% 3
m-Diethylbenzene 35% 71 22% 35
p-Diethylbenzene 25% 71 20% 35
2,2-Dimethylbutane 12% 74 12% 37
2,3-Dimethylbutane 9% 74 3% 37
. 2,3-Dimethylpentane 12% 74 8% 37
2,4-Dimethylpentane 7% 74 8% 37
n-Dodecane 25% 73 42% 36
1-Dodecene 44 % 44 30% 21
Ethane 38% 74 4% 37
2-Ethyl-1-butene NA 0 NA 0
Ethylbenzene 13% 74 8% 37
Ethylene 3% 74 4% 37
m-Ethyltoluene 9% 74 10% 37
o-Ethyltoluene 16% 74 14% 37
p-Ethyltoluene 13% 74 13% 37
n-Heptane 8% 74 6% 37
1-Heptene 26% 74 18% 37
n-Hexane 4% 74 5% 37
1-Hexene 10% 72 14% 36
cis-2-Hexene 10% 72 11% 36
trans-2-Hexene 14% 72 14% 36

Note:  The number of observations for analytical precision indicates the number of replicates in which the
compound was detected in both analyses; the number of observations for sampling precision indicates the
number of duplicates in which the compound was detected in the four analyses of the duplicate samples. By
definition, analytical precision and sampling precision cannot be evaluated for compounds with zero
observations, hence compounds with no observations show an RPD of “NA.”
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Data Quality Parameters for SNMOC Measurements

Table 5-10 (Continued)

Analytical Precision Sampling and Analytical Precision
Compound RPD Number of RPD Number of
(%) Observations (%) Observatioris
Isobutane 3% 74 4% 37
Isobutene/1-Butene 6% 74 8% 37
Isopentane 3% 74 5% 37
Isoprene 14% 74 14% 37
Isopropylbenzene 26% 74 13% 37
2-Methyl-1-butene 1% 74 9% 37
2-Methyl-2-butene 5% 74 9% 37
3-Methyl-1-butene 9% 72 8% 36
Methylcyclohexane 10% 74 7% 37
Methylcyclopentane 3% 74 4% 37
2-Methylheptane 8% 74 6% 37
3-Methylheptane 6% 74 6% 37
2-Methylhexane 5% 74 4% 37
3-Methylhexane 11% 74 10% 37
2-Methylpentane 8% 74 9% 37
3-Methylpentane 5% 74 7% 37
2-Methyl-1-pentene 14% 72 12% 36
4-Methyl-1-pentene 27% 72 25% 36
n-Nonane 14% 74 13% 37
1-Nonene 37% 69 30% 32
n-Octane 9% 74 8% 37
1-Octene 44% 13 51% 4
n-Pentane 2% 74 5% 37
1-Pentene 20% 74 20% 37
cis-2-Pentene 6% 74 7% 37
trans-2-Pentene 14% 74 13% 37
a-Pinene 14% 73 18% 36
b-Pinene 27% 65 31% 31
Propane 6% 74 5% 37
n-Propylbenzene 18% 74 11% 37
Propylene 4% 74 5% 37
Propyne NA 0 NA 0

Note:  The number of observations for analytical precision indicates the number of replicates in which the

compound was detected in both analyses; the number of observations for sampling precision indicates the
number of duplicates in which the compound was detected in the four analyses of the duplicate samples. By

definition, analytical precision and sampling precision cannot be evaluated for compounds with zero
observations, hence compounds with no observations show an RPD of “NA.”
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' Table 5-10 (Continued)
. Data Quality Parameters for SNMOC Measurements

Analytical Precision Sampling and Analytical Precision
Compound RPD Number of RPD Number of
(%) Observations (%) Observations
Styrene 21% 73 24% 36
Toluene 6% 74 6% 37
n-Tridecane 40% 39 59% 17
1-Tridecene 47% 9 ' 74% 4
1,2,3-Trimethylbenzene 26% 73 23% 36
1,2,4-Trimethylbenzene 16% 74 13% ‘ 37
1,3,5-Trimethylbenzene 14% 74 13% 37
2,2,3-Trimethylpentane 11% 74 9% 37
2,2,4-Trimethylpentane 5% 74 . 5% 37
2.3.4-Trimethylpentane 4% 74 4% 37
n-Undecane 15% 74 37% 37
1-Undecene 63% 25 46% 12
m,p-Xylena 9% 74 8% 37
o-Xylene 10% 74 8% 37
. Note: The number of observations for analytical precision indicates the number of replicates in which the
compound was detected in both analyses; the number of observations for sampling precision indicates

the number of duplicates in which the compound was detected in the four analyses of the duplicate
samples. By definition, analytical precision and sampling precision cannot be evaluated for
compounds with zero observations, hence compounds with no observations show an RPD of “NA.”
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6.0  Analysis of VOC Monitoring Results

This section summarizes the VOC ambient ajr monitoring data collected during the 1997
NMOC/SNMOC program. The VOC data are useful for characterizing ambient levels of a
subset of organic compounds, particularly halogenated hydrocarbons, that the SNMOC analytical
methods cannot identify. As Section 5 noted, unidentified organic compounds accounted for
approximately 20 percent of the NMOC concentrations at the stations that collected SNMOC
samples. Of the five NMOC/SNMOC monitoring stations that measured VOC, four (CAMSS5,
CAMS13, DLTX, and JUMX) collected VOC samples daily, and one (NWNTJ) collected VOC
samples on a weekly basis, but only for July 15 through September 15. The remainder of this
section presents a data summary (Section 6.1), analyses and interpretations (Section 6.2), and
data quality parameters (Section 6.3) for all five stations. However, due to limited sample size,
results from the Newark station are not included in some of the analyses. Section 6.4

summarizes the main findings drawn from the VOC monitoring data.

Note: The VOC and SNMOC analytical methods identify many of the same compounds (e.g.,
benzene, toluene, and ethylbenzene). Future NMOC/SNMOC reports will compare levels

measured for these compounds by the two different methods.

6.1  Data Summary Tables

Using the data summary parameters discussed in Section 3.1, Tables 6-1 through 6-5
summarize the monitoring results for the seven statjons that measured VOC. Readers should
note that these tables, along with the VOC samples, only characterize air quality from 6:00 a.m.
t0 9:00 a.m. standard time. It is possible that daily average concentrations of some VOC may be
notably higher or lower than the data summary tabes suggest. Nonetheless, the tables reveal

several noteworthy trends:

. Prevalence. According to the data summary tables, 13 compounds were detected
in over 50 percent of the samples collected at every NMOC/SNMOC monitoring
station. Due to their high prevalence, the summary statistics for these compounds
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are least affected by nondetect observations. Accordingly, most of the analyses in
this section focus on these most prevalent compounds:

Acetylene Methylene chloride Toluene

Benzene n-Octane 1,1,1-Trichloroethane
Carbon tetrachloride Propylene m,p-Xylene
Chloromethane Styrene o0-Xylene
Ethylbenzene

Despite the emphasis this section places on the most prevalent compounds, trends
and patterns among some of the least prevalent compounds can also provide
insight into the complex mixture of air pollutants that form ozone. For example,
Section 6.2 evaluates spatial variations in concentrations of 1,3-butadiene to
comment on the age of the air mass at the NMOC/SNMOC monitoring locations.

Concentration range. The data summary tables also indicate that only acetylene,
benzene, propylene, toluene, and m,p-xylene have concentrations exceeding 5
ppbv at one or more monitoring stations. Because sampling occurred only during
the morning hours, it is very likely that the concentration ranges cited in the
summary tables do not represent the concentration range over the course of a day.
Further, due to the limited sampling schedule at Newark, the concentration ranges
shown in Table 6-5 probably do not even represent the actual distribution of
concentrations for 6:00 a.m. to 9:00 a.m. As a result, these concentration ranges
should be viewed only as qualitative estimates of the span of ambient air
concentrations at the NMOC/SNMOC monitoring stations.

Central tendency. Table 6-1 through 6-5 present central tendency data for the five
stations that measured VOC. Only those compounds shown in boldface were
detected in more than 50 percent of the VOC samples at the corresponding
monitoring station. Central tendency values for all other compounds should be
interpreted with caution, since the higher frequency of nondetects for these
compounds probably biased the central tendency calculation.

To illustrate how central tendency concentrations varied from one location to the
next, Figure 6-1 compares geometric mean concentrations of the 13 most
prevalent VOC across the five monitoring stations. With few exceptions,
geometric mean concentrations of the most prevalent compounds were highest at
NWNIJ (Newark) and lowest at CAMSS (Dallas), with concentrations at the other
monitoring stations taking intermediate values. Geometric mean concentrations
of acetylene and toluene were greater than 1.0 ppbv at every monitoring station,
and geometric mean concentrations of benzene, propylene, and m,p-xylene were
greater than 1.0 ppbv at two or more stations. The analyses and interpretations in



Section 6.2 refer to Figure 4-1 to characterize the sources of VOC pollution and to
relate the VOC ambient air monitoring data to ozone formation processes.

. Variability. According to Tables 6-1 through 6-5, the coefficients of variation for
most compounds were less than 1.0 at every monitoring station, suggesting that
ambient air concentrations of these VOC have comparable variability. As
exceptions, the coefficients of variation for methylene chloride, styrene,
tetrachloroethylene, and trichloroethylene were often greater than 1.0. The greater
variability for these compounds suggests that the magnitude of their
concentrations changes significantly from one morning to the next. This
observation is consistent with these compounds originating from sources found at
discrete locations (e.g., industrial emissions sources), as opposed to those found
throughout urban areas (e.g., motor vehicle sources). Section 6.2 revisits this
issue.

To elaborate on trends and patterns indicated by the VOC summary tables, the following
sections analyze spatial variations and data quality parameters in the VOC monitoring data.
These analyses provide additional context for understanding the summary statistics shown in

Tables 6-1 through 6-5.

6.2  Analyses and Interpretations

To put the VOC monitoring data into perspective, this section evaluates the composition
of VOC samples (Section 6.2.1), compares VOC concentrations to selected meteorological
parameters (Section 6.2.2), and presents miscellaneous interpretations of the VOC air monitoring
data. Because Section 5 thoroughly characterized trends and patterns for ambient air
concentrations of hydrocarbons, the following analyses focus primarily on trends and patterns for

halogenated hydrocarbons, which cannot be identified by the SNMOC analytical method.

6.2.1 Composition of Air Samples

To evaluate the composition of VOC samples, two analyses were performed—one
focusing on relative concentrations of hydrocarbons and halogenated hydrocarbons, the other
examining the composition of BTEX compounds. Further analyses on the composition of VOC
samples are likely to be biased by large numbers of nondetects, primarily because more than half

of the VOC were detected in fewer than 25 percent of the samples.
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As an indicator of the relative quantities of hydrocarbons and halogenated hydrocarbons
at the SNMOC monitoring stations, Figure 6-2 presents the total concentration of the 14 most
prevalent VOC, broken down by contribution from hydrocarbons and halogenated hydrocarbons.
The figure illustrates that, on average, hydrocarbons account for more than 90 percent of the
concentrations of the most prevalent VOC, with halogenated hydrocarbons accounting for less
than 10 percent. Because the VOC analytical method does not identify all airborne compounds
(leaving out, for example, most of the hydrocarbons identified by the SNMOC method),

Figure 6-2 probably does not indicate the actual composition of the two compound groups in
ambient air. Nonetheless, the figure shows that concentrations of the most prevalent
hydrocarbons at the NMOC/SNMOC monitoring locations far outweighed the total concentration
of the most prevalent halogenated hydrocarbons.! Despite the relatively minor contributions of
halogenated hydrocarbons to total levels of air pollution, however, this compound group
continues to be of interest to regulatory agencies due to the toxicity of its individual components

and the reactivity of selected compounds in upper layers of the atmosphere.

To characterize VOC samples further, Figure 6-3 illustrates how the magnitude and
composition of BTEX compounds changed with time at the CAMS13 monitoring station. (These
compounds accounted for over 60 percent of the overall levels of the most prevalent VOC.) The
figure highlights two notable trends: (1) On average, the composition of BTEX compounds in
the air sampled at CAMS 13 changed little during the summer of 1997, even though the
magnitude of the concentration for these compounds changed significantly. The relatively
constant ratios—a trend observed at every SNMOC monitoring station—suggest that the same
emissions source, or group of sources, probably contributed to ambient levels of BTEX
compounds throughout the summer. (2) The magnitudes of the BTEX ratios calculated from the
VOC sampling data are nearly identical to those calculated from the SNMOC sampling data (see
Figure 5-4), providing evidence that both the SNMOC and VOC analytical methods measure

! In fact, ambient air concentrations of many individual hydrocarbons (e.g., acetylene and toluene) were, on
average, greater than the sum of the most prevalent halogenated compounds.
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concentrations of these compounds accurately. Future NMOC/SNMOC reports will include

more quantitative comparisons between monitoring results from the different methods.

6.2.2 Comparison to Selected Meteorological Parameters

The analyses presented in Section 5.2.3 found that ambient air concentrations of
hydrocarbons tended to be independent of wind direction at every NMOC/SNMOC monitoring
station. To supplement these analyses, 3-hour average observations of wind direction were
compared to corresponding 3-hour average concentrations of the most prevalent VOC at the four
monitoring stations that collected daily samples. Although concentrations of many VOC,
especially those emitted primarily by motor vehicles, were weakly correlated or completely
uncorrelated with wind direction, ambient levels of some VOC exhibited the opposite trend.

Examples of these exceptions include:

. CAMSS5. As Figure 6-4 shows, ambient air concentrations of styrene at CAMS3S
were notably higher when winds blew from the south and the southwest (1.e., wind
directions between 180° and 225°) than when winds blew from any other compass
direction. This observation suggests that, during the morning hours, styrene at
CAMSS5 probably originates from emissions sources located south to southwest of
the monitoring station, rather than from motor vehicles or other emissions sources
typically found all around the monitoring location. No other compound exhibited
as strong a dependence on wind direction at this station.

. CAMS13. Of the 13 most prevalent compounds at CAMS13, tetrachloroethylene
had the strongest correlation between its ambient air concentration and wind
direction during the morning hours. According to Figure 6-5, tetrachloroethylene
was detected at levels ranging from 0.5 ppbv to 5.0 ppbv when winds blew from
the north, the northeast, the east, and the southeast (i.e., wind directions between
0° and 135°), but was either not detected or detected at trace levels when winds
blew from other directions. This trend suggests that the predominant sources of
tetrachloroethylene near CAMS13 are probably located in the sector between the
north and the southeast of the monitoring station. With only eight observations at
levels greater than 0.5 ppbv, further research is needed to determine whether the
apparent link between wind direction and concentrations of tetrachloroethylene
consistently occurs.

. DLTX. Like the results shown in Figure 6-4 for CAMSS5, Figure 6-6 indicates that
elevated concentrations of styrene at DLTX also occurred most frequently when
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winds blew from the south and the southwest (i.e., wind directions between 180°
and 225°%. When winds blew from other directions, styrene was usually at trace or
undetectable levels, except for two peak concentrations observed with winds
blowing from the north. Thus, the 1997 monitoring data indicate that styrene at
DLTX primarily originates from emissions sources located south to southwest of

the monitoring station.

. JUMX. Unlike the trends highlighted in Figures 6-4 to 6-6, ambient air
concentrations of almost all VOC measured at JUMX did not exhibit notable
correlations with wind direction. For example, Figure 6-7 shows how no obvious
data trend is apparent between levels of methylene chloride at Juarez and wind
direction. The lack of correlations probably results from several factors, such as
the possibility of many different pollution sources in all directions from the
monitoring station or the possibility that prevailing wind patterns at the El Paso
International Airport may differ significantly from those at the Juarez monitoring
station.

Although Figures 6-4 through 6-7 present data trends for only three pollutants, the
comparisons between wind direction and ambient air concentrations in Sections 4.2.1, 5.2.3, and
in the preceding paragraphs illustrate the utility of an important data analysis tool: correlations
between wind patterns and air quality observations can help distinguish pollutants that appear to
be emitted from sources in discrete directions (e.g., styrene at DLTX and CAMS3) from
pollutants that appear to be emitted from sources throughout an airshed (e.g., NMOC at LINY
and NWNIJ).

6.2.3 Miscellaneous Interpretations
For additional information on interpreting ambient air monitoring data for halogenated
hydrocarbons, the following discussion comments on some air quality trends observed only for

the five most prevalent compounds:

. Carbon Tetrachloride. Regardless of location and time of year, recent ambient air
monitoring efforts throughout the United States consistently detect concentrations
of carbon tetrachloride at levels ranging from 0.06 ppbv to 0.10 ppbv (ERG,
1998). As Figure 6-1 shows, VOC monitoring data from the 1997 monitoring
program are consistent with this trend. The relatively constant levels of carbon
tetrachloride are believed to result primarily from the compound’s resistance to
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photochemical breakdown: estimates of the half-life of carbon tetrachloride in the
troposphere range from tens to hundreds of years (ATSDR, 1994). Thus, once
emitted to the atmosphere, carbon tetrachloride appears to gradually diffuse to
regions of Jower concentration, rather than decompose or react with other
pollutants. The absence of notable spatial variations also results from the fact that
most uses of carbon tetrachloride have been discontinued due in part to an
international agreement to phase out ozone-depleting chemicals (ATSDR, 1994).

Chloromethane. Like concentrations of carbon tetrachloride, levels of
chloromethane varied little among the NMOC/SNMOC monitoring stations (see
Figure 6-1). On the other hand, previous year-round studies have observed
significant spatial variations in ambient air concentrations of chloromethane,
particularly during the colder winter months (ERG, 1998). The fact that sampling
for this monitoring program only occurs in the summer most likely explains the
inconsistency between the current VOC data and selected other studies. It should
be noted that some studies have estimated that over 90 percent of global releases
of chloromethane are from natural sources, such as biogenic production by marine
phytoplankton (ATSDR, 1997a).

Methylene Chloride. Though frequently detected, geometric mean ambient air
concentrations of methylene chloride at CAMS35, DLTX, and JUMX were either
lower or marginally higher than the compound’s detection limit (0.09 ppbv). At
CAMS 13 and NWNI, however, geometric mean concentrations were 0.30 ppbv
and 0.62 ppbv, respectively. These spatial variations are best explained by similar
spatial variations in industrial emissions sources of methylene chloride. In
support of this hypothesis, the 1995 Toxic Release Inventory (TRI) indicates that

~ over 50,000 pounds of methylene chloride were released to the air by facilities

within 5 miles of both the CAMS13 and NWNJ monitors, while less than 25,000
pounds were released by facilities near the CAMS5 and DLTX monitors.” The
proximity of the individual sources, as well as other sources that are not required
to report to TRI, likely accounts for the spatial variations of methylene chloride
shown in Figure 6-1.

Tetrachloroethylene. During the 1997 program, both the prevalence and highest
concentrations of tetrachloroethylene exhibited consistent spatial variations:

(1) though detected in roughly 75 percent of the samples collected in the
Dallas-Fort Worth area, tetrachloroethylene was detected in less than 25 percent
of the samples at Juarez; and (2) the highest concentrations of tetrachloroethylene
at the monitors in Dallas and Fort Worth were all over 5 times greater than the
highest level recorded at Juarez. The difference in concentrations between these

2 P . . . .
Emissions data for the JUMX monitoring station are not provided because the TRI database does not
account for emissions sources in Mexico.
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metropolitan areas probably results from differing emissions levels from industrial
sources, primarily dry cleaners. (Dry cleaners are suspected to account for a
significant portion of overall releases of tetrachloroethylene to the air in the
United States [ATSDR, 1997b]). The relatively low concentrations at JUMX may
result from the monitoring station being located far from dry cleaners and other
sources of tetrachloroethylene or the possibility that dry cleaners in Mexico use
solvents other than tetrachloroethylene.

. 1,1,1-Trichloroethane. According to Figure 6-1, geometric mean concentrations
of 1,1,1-trichloroethane were fairly similar from one station to the next, with
marginally higher concentrations observed at Newark—the station in the area with
the most industrial emissions sources (ERG, 1997b). Although monitoring
stations located nearer industrial facilities that emit 1,1,1-trichloroethane probably
have marginally higher geometric mean concentrations, the difference in
concentrations is too small to conclude exactly which factors most strongly affect
ambient levels of this compound. Therefore, perhaps the most notable trend in
levels of 1,1,1-trichloroethane is the absence of significant spatial variations:
geometric mean concentrations at the five stations that measured VOC ranged
only from 0.10 ppbv to 0.18 ppbv.

6.3  Data Quality Parameters

To characterize the quality of the VOC air monitoring data, Tables 6-6 and 6-7 present
completeness and precision data, respectively, for the 1997 program. According to Table 6-6,
294 of the 309 scheduled sampling events were-succcssfully completed, yielding an overall
completeness figure of 95 percent. Although some sites had higher completeness figures than
others, every NMOC/SNMOC monitoring station had 89 percent completeness or better.
Readers may note that the completeness data for VOC sampling (Table 6-7) is nearly identical to
that for SNMOC sampling (Table 5-9). The similarity results from the fact that, for each
sampling event, concentrations of VOC and concentrations of SNMOC were measured from the
same stainless steel canister sample; the slight differences in the completeness figures results
from the fact that two samples had valid VOC data, but invalid SNMOC data (due to an error in

Iaboratory analysis).

Based on the approach outlined in Section 3.3.2, Table 6-7 presents precision data for the

VOC monitoring. On average, the most prevalent VOC were measured with a precision ranging
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from 6 percent (for toluene) to 20 percent (for acetylene), and the least prevalent compounds had
analytical precision ranging from 9 percent (for p-dichlorobenzene and tetrachloroethylene) to 29
percent (for 1,3-butadiene). These precision data fall well within data quality objectives for the
analytical method. Overall, the low measurement variability, coupled with the high
completeness figures, suggests that field sampling teams and laboratory analysts strictly followed
method specifications to minimize influences of random sampling or analytical errors.

Accordingly, the VOC monitoring data are believed to be of very high quality.

6.4  Summary

The VOC air monitoring data supplement the extensive SNMOC air monitoring data in
two important ways. First, trends among the VOC concentrations corroborate several important
findings of Section 5, such as the consistent profiles of the BTEX compounds, the significant
increases in hydrocarbon concentrations at CAMS13, and the similar concentration values for
compounds identified by both analytical methods. Second, the VOC air monitoring data
characterize concentrations of halogenated hydrocarbons—a group of compounds that the
SNMOC analytical method cannot identify. Five halogenated hydrocarbons (carbon
tetrachloride, chloromethane, methylene chloride, tetrachloroethylene, and 1,1,1-trichloroethane)
were detected in over half of the VOC samples collected during the 1997 program, but their
combined concentration accounted for a much smaller fraction of total levels of air pollution than
the combined concentration of the most prevalent hydrocarbons. Nonetheless, trends and
patterns among the halogenated hydrocarbons were shown to be consistent with findings from

previous air monitoring studies and predictions based on industrial emissions data.
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Figure 6-1 (Page 1 of 5)
Geometric Mean Concentrations of the Most Prevalent VOC
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Figure 6-1 (Page 3 of 5)
Geometric Mean Concentrations of the Most Prevalent VOC
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Figure 6-1 (Page 4 of 5)
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Composition and Magnitude of BTEX Concentrations at CAMS13, by Month

Figure 6-3
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Table 6-6

Completeness of VOC Monitoring

Monitoring Station Number of Days Number of Days
When Sampling with Valid Completeness

Code Location Was Attempted Samples
CAMS13 | Fort Worth, TX 84 79 94 %
CAMSS | Dallas, TX 84 82 98 %
DLTX | Dallas, TX 85 83 98 %
JUMX | Juarez, Mexico 56 50 89 %
Totals 309 294 93 %

Note: The Newark monitoring station collected fewer than 10 VOC samples according to a site-specific

schedule. Sampling resuits for this station are not included in this review of completeness.
The Juarez monitoring station has notably fewer samples, because it did not start collecting samples

until July 15, 1997.
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Table 6-7
Data Quality Parameters for VOC Measurements

Analytical Precision S amplin}g an_d _An alytical .
recision
Compound
Relative Percent Number of Relative Percent Number of
Difference Observations Difference Observations
Acetylene 20% 73 8% 36
Benzene 8% 73 6% 36
Bromochloromethane NA 0 NA 0
Bromodichloromethane NA 0 NA 0
Bromoform NA 0 NA 0
Bromomethane NA 0 NA 0
1,3-Butadiene 29% 43 20% 20
Carbon tetrachloride 16% 72 12% 35
Chlorobenzene NA 0 NA 0
Chloroethane NA 0 NA 0
Chloroform 11% 2 0% 1
Chloromethane 13% 73 6% 36
Chloroprene NA 0 NA 0
Dibromochloromethane NA 0 NA 0
m-Dichlorobenzene NA 0 NA 0
o-Dichlorobenzene NA 0 NA 0
p-Dichlorobenzene 9% 20 3% 7
1,1-Dichloroethane NA 0 NA 0
1,2-Dichloroethane NA 0 NA 0 .
trans-1,2-Dichloroethylene NA 0 NA 0
1,2-Dichloropropane NA 0 NA 0
cis-1,3-Dichloropropylene NA 0 NA 0
trans-1,3-Dichloropropylene ‘NA 0 NA 0
Ethylbenzene 8% 73 7% 36
Methylene chloride 15% 57 15% 28
n-Octane 16% 66 13% 32
Propylene 14% 73 8% 36
Styrene 14% 51 22% 24
1,1,2,2-Tetrachloroethane NA 0 NA 0
Tetrachloroethylene ' 9% 47 7% 23
Toluene 0% 72 8% 35
1,1,1-Trichloroethane 15% 73 10% 36
1,1,2-Trichloroethane NA 0 NA 0
Trichloroethylene 25% 10 12% 5
Vinyl chloride NA 0 NA 0
m,p-Xylene 8% 73 7% 36
Le-Xviene __8% 72 1% 33

Note:  The number of observations for analytical precision indicates the number of replicates in which the
compound was detected in both analyses; the number of observations for sampling and analytical
precision indicates the number of duplicates in which the compound was detected in the four analyses
of the duplicate samples. By definition, analytical precision and sampling precision cannot be .
evaluated for compounds with zero observations, hence compounds with no observations show an .
RPD of “NA.”
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